Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có đầy câu hỏi tương tự đáy bạn lên các câu hỏi đó mà xem
a)Xét tử số: a3+2a2-1= a3+a2+a2-a+a-1=(a3+a2)+(a2-a)-(a+1)=a2(a+1)+a(a+1)-(a+1)=(a+1)(a2+a-1)
Xét mẫu số: a3+2a2+2a+1=(a3+1)+(2a2+2a)=(a+1)(a2+a-1)+2a(a+1)=(a+1)(a2+a-1+2a)=(a+1)(a2+a-1+a+a)=(a+1)(a2+a+1)
Vậy A=(a+1)(a2+a-1)/(a+1)(a2+a+1)=(a2+a-1)/(a2+a+1)
Chọn D.
Phương pháp:
Sử dụng phương pháp tích phân từng phần, ưu tiên đặt u = ln x
Cách giải:
ta có:
\(log^{\left(2a^2\right)}_2+\left(log_2^a\right)a^{log_a^{\left(log^a_1+1\right)}}+\frac{1}{2}log^2_2a^4=log_2^2+log_2^{a^2}+log_2^a\left(log^a_2+1\right)+\frac{1}{2}log^2_2a^4\)
\(=1+2log^a_2+log^a_2\left(1+log^a_2\right)+2log^2a_2\)
\(=3log^2_2a+3log^a_2+1\)
Ta có
Ta có
Áp dụng bất đẳng thức Bunhiacopxky, ta có
Do đó
Dấu "x" xảy ra
Chọn C.
Ta thấy (1) là hình tròn tâm
Ta có Xem đây là phương trình đường thẳng.
Để đường thẳng và hình tròn có điểm chung
a: \(A=\dfrac{a^3+a^2+a^2+a-a-1}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\dfrac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\dfrac{a^2+a-1}{a^2+a+1}\)
b: Nếu a là số nguyên âm thì a<0
Vì a2+a=a(a+1) chia hết cho 2 nên \(a^2+a-1;a^2+a+1\) là hai số tự nhiên lẻ liên tiếp
hay A là phân số tối giản