K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2019

Ta có \(7^{200}< 7^{205}\Rightarrow7^{200}+1< 7^{205}+1\Rightarrow\frac{7^{200}+1}{7^{202}+1}< \frac{7^{205}+1}{7^{202}+1}\)

22 tháng 3 2019

vi 7200 + 1 < 7205 + 1 => \(\frac{7^{200}+1}{7^{202}+1}< \frac{7^{205}+1}{7^{202}+1}\)

                                  => \(A< B\)

mk nhầm, là so sánh C và D nhé

10 tháng 4 2019

\(\)Đặt \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}...+\frac{1}{205}}{\frac{204}{1}+\frac{203}{2}+\frac{202}{3}+...+\frac{1}{204}}=\frac{B}{C}\)

Biến đổi C:

\(C=\left(\frac{204}{1}+1\right)+\left(\frac{203}{2}+1\right)+\left(\frac{202}{3}+1\right)+...+\left(\frac{1}{204}+1\right)-204\)

\(=205+\frac{205}{2}+\frac{205}{3}+..+\frac{205}{204}+\frac{205}{205}-205\)

\(=205.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}\right)\)

\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}}{205.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{205}\right)}=\frac{1}{205}\)

18 tháng 4 2019

a)

\(\frac{11x-1}{4}=\frac{10}{4}\)

⇒ 11x - 1 = 10

11x = 10 + 1 = 11

x = 11 : 11 = 1

b)

\(\left[{}\begin{matrix}3x-6=0\\\frac{x}{9}-\frac{1}{3}=0\end{matrix}\right.\)\(\left[{}\begin{matrix}3x=0+6\\\frac{x}{9}=0+\frac{1}{3}\end{matrix}\right.\)\(\left[{}\begin{matrix}3x=6\\\frac{x}{9}=\frac{1}{3}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=6:3\\\frac{x}{9}=\frac{3}{9}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy x = 2 hoặc x = 3

c)

\(M=c\left(\frac{5}{7}+\frac{7}{14}-\frac{17}{14}\right)\)

\(M=c\left(\frac{10}{14}+\frac{7}{14}-\frac{17}{14}\right)\)

\(M=\left(\frac{2018}{2019}-\frac{2019}{2020}\right).0\)

M = 0

d)

\(N=\frac{-7}{13}+2-\frac{19}{13}+\frac{2020}{2018}.\frac{2018}{202}\)

\(N=\left(\frac{-7}{13}-\frac{19}{13}\right)+2+10\)

N = \(-2+2+10\)

N = 10

20 tháng 12 2016

Mình sửa chút: B>1

26 tháng 10 2020

A=\(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}\)

\(\Rightarrow7A=(1+\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{99}})-\left(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+....+\frac{1}{7^{100}}\right)\)

\(\Rightarrow6A=\left(1-\frac{1}{7^{99}}\right)\)

\(\Rightarrow A=\left(1-\frac{1}{7^{99}}\right):6\)

Câu b tương tự nha

26 tháng 10 2020

a) \(A=\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...........+\frac{1}{7^{100}}\)

\(\Rightarrow7A=1+\frac{1}{7}+\frac{1}{7^2}+.........+\frac{1}{7^{99}}\)

\(\Rightarrow7A-A=6A=1-\frac{1}{7^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{7^{100}}}{6}\)