K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2019

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+...+\frac{39}{19^2.20^2}\)

\(=1-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{19^2}-\frac{1}{20^2}\)

\(=1-\frac{1}{20^2}\)

\(=\frac{399}{400}\)

21 tháng 11 2017

Dễ quá tự lm đi

14 tháng 9 2016

b) \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=\frac{-2}{3}\)

d) \(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}+\frac{2}{11}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}+\frac{13}{11}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}+\frac{1}{11}\right)}=\frac{2}{13}\)

15 tháng 9 2016

Làm tiếp:

\(=\left(1+\frac{1}{2}+.....+\frac{1}{2017}\right)-\left(1+\frac{1}{2}+....+\frac{1}{1008}\right)\)

\(=\frac{1}{1009}+\frac{1}{1010}+.........+\frac{1}{2017}\)

\(\Rightarrow\frac{\frac{1}{1009}+....+\frac{1}{2017}}{1-\frac{1}{2}+.....+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}}=1\)

Bài 2:

Đặt \(A=\frac{1}{2^2}+.......+\frac{1}{2^{800}}\)

\(4A=1+\frac{1}{2^2}+.....+\frac{1}{2^{798}}\)

\(\Rightarrow4A-A=1-\frac{1}{2^{800}}\)

\(\Rightarrow3A=1-\frac{1}{2^{800}}< 1\Rightarrow A< \frac{1}{3}\)

Vậy \(\frac{1}{2^2}+\frac{1}{2^4}+........+\frac{1}{2^{800}}< \frac{1}{3}\)

15 tháng 9 2016

Bài 1:Tính

a,   Xét biểu thức \(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).........\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)..........\left(1+\frac{n+2}{n}\right)}\) với\(n\in N\)

Ta có:\(\frac{\left(1+\frac{n}{1}\right)\left(1+\frac{n}{2}\right).......\left(1+\frac{n}{n+2}\right)}{\left(1+\frac{n+2}{1}\right)\left(1+\frac{n+2}{2}\right)......\left(1+\frac{n+2}{n}\right)}\)

\(=\frac{\frac{n+1}{1}.\frac{n+2}{2}........\frac{2n+2}{n+2}}{\frac{n+3}{1}.\frac{n+4}{2}.........\frac{2n+2}{n}}\)

\(=\frac{\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right)}{1.2.3.........\left(n+2\right)}}{\frac{\left(n+3\right)\left(n+4\right)........\left(2n+2\right)}{1.2.3.........n}}\)

\(=\frac{\left(n+1\right)\left(n+2\right).......\left(2n+2\right).1.2.3.......n}{\left(n+3\right)\left(n+4\right)........\left(2n+2\right).1.2.3......\left(n+2\right)}\)

\(=\frac{\left(n+1\right)\left(n+2\right)}{\left(n+1\right)\left(n+2\right)}=1\)

Áp dụng vào bài toán ta có đáp số là:1

b, \(\frac{\frac{-6}{5}+\frac{6}{19}-\frac{6}{23}}{\frac{9}{5}-\frac{9}{19}+\frac{9}{23}}=\frac{\left(-6\right).\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}{9.\left(\frac{1}{5}-\frac{1}{19}+\frac{1}{23}\right)}=\frac{-6}{9}=-\frac{2}{3}\)

c,\(\frac{\frac{1}{6}-\frac{1}{39}+\frac{1}{51}}{\frac{1}{8}-\frac{1}{52}+\frac{1}{68}}=\frac{\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}{\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{13}+\frac{1}{17}\right)}=\frac{\frac{1}{3}}{\frac{1}{4}}=12\)

d,\(\frac{\frac{2}{3}-\frac{2}{5}-\frac{2}{7}}{\frac{13}{3}-\frac{13}{5}-\frac{13}{7}}=\frac{2\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}{13\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}\right)}=\frac{2}{13}\)

e,Xét mẫu số ta có:

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..........+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\)

\(=1+\frac{1}{2}-2.\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-2.\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-2.\frac{1}{2016}+\frac{1}{2017}\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2017}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+.........+\frac{1}{2016}\right)\)

31 tháng 7 2017

1)\(\frac{1}{7}\).(\(\frac{1}{3}\)+\(\frac{1}{2}\)-1)

=\(\frac{1}{7}\).\(\frac{-1}{6}\)

=\(\frac{-1}{42}\)

2)\(\frac{3}{5}\).(\(\frac{7}{9}\)+\(\frac{2}{9}\)+1)

=\(\frac{3}{5}\).2=\(\frac{6}{5}\)

3)=21.\(\frac{1}{7}\)-21.\(\frac{1}{5}\)+21.\(\frac{19}{21}\)

=3-\(\frac{21}{5}\)+19

=\(\frac{89}{5}\)

31 tháng 7 2017

cảm ơn bạn nhé

26 tháng 6 2019

a)Xét vế trái , ta có :

Gọi tổng các số hạng ở vế trái là A

=> A= \(\frac{1}{3}\)+\(\frac{1}{3^2}\)+ ... +\(\frac{1}{3^{99}}\)

=>3A = 1 + \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ ... + \(\frac{1}{3^{98}}\)

=> 3A - A = 1 + \(\frac{1}{3}\)+ \(\frac{1}{3^2}\)+ ... + \(\frac{1}{3^{98}}\)- ( \(\frac{1}{3}\)+\(\frac{1}{3^2}\)+ ... +\(\frac{1}{3^{99}}\))

=> 2A = 1 - \(\frac{1}{3^{99}}\)

=> A = \(\frac{1}{2}\)- \(\frac{1}{3^{99}.2}\) < \(\frac{1}{2}\)

b)\(\frac{3}{1^2.2^2}\)+ \(\frac{5}{2^2.3^2}\)+ ... + \(\frac{19}{9^2.10^2}\)

= \(\frac{3}{1.4}\)+ \(\frac{5}{4.9}\)+ .... + \(\frac{19}{81.100}\)

= 1 - \(\frac{1}{4}\)+ \(\frac{1}{4}\)- \(\frac{1}{9}\)+ ... + \(\frac{1}{81}\)- \(\frac{1}{100}\)

= 1 - \(\frac{1}{100}\) <1

27 tháng 6 2019

a,

\(\sum\limits^{99}_{x=1}\left(\frac{1}{3^x}\right)=\frac{1}{2}\)

bài a nó có ............

3 tháng 3 2022

a) \(2^5+8\left[\left(-2\right)^3:\frac{1}{2}\right]^0-\left(\frac{1}{2}\right)^3\times2+\left(-2\right)^3\)

\(=32+8\times1-\frac{1}{8}\times2+\left(-8\right)\)

\(=32+8-\frac{1}{4}+\left(-8\right)\)

\(=40-\frac{1}{4}+\left(-8\right)\)

\(=39\frac{3}{4}+\left(-8\right)\)

\(=31\frac{3}{4}\)

b vaf c mai minhf lamf, ht

19 tháng 7 2017

\(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}\)

\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+....+\frac{19}{81.100}\)

\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+....+\frac{1}{81}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow A< 1\text{(đpcm) }\)

25 tháng 9 2018

Giúp mik với mn ơi

25 tháng 9 2018

1.\(\left(-\frac{6}{5}+\frac{6}{16}-\frac{6}{23}\right):\left(\frac{9}{5}-\frac{9}{16}+\frac{9}{23}\right)\)

\(=6\left(-\frac{1}{5}+\frac{1}{16}-\frac{1}{23}\right):\left(-9\right)\left(\frac{-1}{5}+\frac{1}{16}-\frac{1}{23}\right)\)

\(=6:\left(-9\right)=-\frac{2}{3}\)

2. \(\frac{\frac{3}{7}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{0.5-\frac{1}{3}+\frac{1}{4}}{-\frac{3}{2}+1-\frac{3}{4}}\)

\(=\frac{3\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{-3\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(=\frac{3}{5}-\frac{1}{3}\)

\(=\frac{9}{13}-\frac{5}{15}=\frac{4}{15}\)