K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2015

\(A=\frac{2010^{10}-1}{2010^{11}-1}<\frac{2010^{10}-1}{2010^{11}-1}+1=\frac{2010^{10}+1}{2011^{10}+1}=B\)

Suy ra: A<B

30 tháng 6 2018

a) Ta có :

\(A=\frac{10^{2010}+1}{10^{2011}+1}\)

\(\Rightarrow10A=\frac{10^{2011}+10}{10^{2011}+1}=\frac{\left(10^{2011}+1\right)+9}{10^{2011}+1}=1+\frac{9}{10^{2011}+1}\)

\(B=\frac{10^{2011}+1}{10^{2012}+1}\)

\(\Rightarrow10B=\frac{10^{2012}+10}{10^{2012}+1}=\frac{\left(10^{2012}+1\right)+9}{10^{2012}+1}=1+\frac{9}{10^{2012}+1}\)

Vì \(\frac{9}{10^{2011}+1}>\frac{9}{10^{2012}+1}\)nên \(10A>10B\)

\(\Rightarrow A>B\)

Vậy : \(A>B\)

b) Ta có :

\(\left(\frac{-1}{2}\right)^{11}=\frac{-1^{11}}{2^{11}}=\frac{-1}{2^{11}}\)

\(\left(\frac{-1}{2}\right)^{13}=\frac{-1^{13}}{2^{13}}=\frac{-1}{2^{13}}\)

Vì \(\frac{-1}{2^{11}}>\frac{-1}{2^{13}}\)nên \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)

Vậy : \(\left(\frac{-1}{2}\right)^{11}>\left(\frac{-1}{2}\right)^{13}\)

30 tháng 6 2018

\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}\)

\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+10}{10^{2012}+10}\)

\(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10\cdot\left(10^{2010}+1\right)}{10\cdot\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)

Vậy : B < A

2 tháng 3 2017

Vì \(\frac{10^{2011}+1}{10^{2012}+1}< 1\)

=> \(B=\frac{10^{2011}+1}{10^{2012}+1}< \frac{10^{2011}+1+9}{10^{2012}+1+9}=\frac{10^{2011}+10}{10^{2012}+10}=\frac{10\left(10^{2010}+1\right)}{10\left(10^{2011}+1\right)}=\frac{10^{2010}+1}{10^{2011}+1}=A\)

Vậy A > B

2 tháng 3 2017

A>B hay sao y

10 tháng 3 2019
A=-9/10^2011+-9/10^2011+-9/10^2010 B=-9/10^2011+-9/10^2010+-10^2010 So sanh 10^2011>10^2010 Suy ra A>B
8 tháng 4 2016

SBT toán 6

10 tháng 4 2015

\(1-A=1-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010^{2012}+1}{2010^{2012}+1}-\frac{2010^{2011}+1}{2010^{2012}+1}=\frac{2010}{2010^{2012}+1}\)

\(1-B=1-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010^{2011}+1}{2010^{2011}+1}-\frac{2010^{2010}+1}{2010^{2011}+1}=\frac{2010}{2010^{2011}+1}\)

Do \(\frac{2010}{2010^{2012}+1}<\frac{2010}{2010^{2011}+1}\)nên \(A>B\)

10 tháng 4 2015

Do 20102011+1<20102012+1=>A<1

Tương tự với B;B<1

Theo đề bài ta có:

\(A=\frac{2010^{2011}+1}{2010^{2012}+1}<\frac{2010^{2011}+1+2009}{2010^{2012}+1+2009}=\frac{2010^{2011}+2010}{2010^{2012}+2010}=\frac{2010.\left(1+2010^{2010}\right)}{2010.\left(1+2010^{2011}\right)}=\frac{2010^{2010}+1}{2010^{2011}+1}=B\)(*)

Từ (*)=> A<B

 

6 tháng 5 2017

Ta có:

\(A=\frac{2010^{2011}+1}{2010^{2012}+1}\)

\(2010A=\frac{2010^{2012}+2010}{2010^{2012}+1}\)

\(2010A=1+\frac{2009}{2010^{2012}+1}\)

Lại có:

\(B=\frac{2010^{2010}+1}{2010^{2011}+1}\)

\(2010B=\frac{2010^{2011}+2010}{2010^{2011}+1}\)

\(2010B=1+\frac{2009}{2010^{2011}+1}\)

Vì \(1+\frac{2009}{2010^{2012}+1}< 1+\frac{2009}{2010^{2011}+1}\)

nên 2010A < 2010B

hay A < B

Vậy A < B

25 tháng 2 2019

A=\(\frac{-199}{10^{2011}}\)

B=\(\frac{-109}{10^{2011}}\)

Dễ dàng so sánh được A<B

15 tháng 7 2019

A=-9/102011+(-19/102010)

B=-9/102010+(-19/102011)

Vì -9/102011>(-19/102011) và -9/102011-(-19/102011)=10/102011

-19/102010<(-9/102010) và -9/102010-(-19/102010)=10/102010

mà 10/102011<10/102010 nên suy ra B>A