\(A=\frac{1}{3.10}+\frac{1}{10.17}+.....+\frac{1}{73.8}-\frac{1}{2.9}-\frac{1}{9.16}-\frac{1}{16...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2015

\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}<\frac{1}{5}.13=\frac{13}{5}<2\)

24 tháng 8 2015

\(\frac{x}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{100.103}=\frac{102}{103}\)

\(\Leftrightarrow\frac{x-1}{1.4}+\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\right)=\frac{102}{103}\)

\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{306}{103}\)

\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\frac{102}{103}=\frac{306}{103}\)

\(\Leftrightarrow\frac{3}{4}\left(x-1\right)=\frac{204}{103}\)

\(\Leftrightarrow x-1=\frac{272}{103}\)

\(\Leftrightarrow x=\frac{375}{103}\)

24 tháng 8 2015

OLM xem đi em lm đúng ko

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???

8 tháng 7 2020

\(\left(\frac{1}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+1}\right):\frac{1}{x-1}\left(x\ge0;x\ne1\right)\)

\(< =>\left(\frac{\sqrt{x}+1+\sqrt{x}-1}{\sqrt{x}^2-1^2}\right):\frac{1}{x-1}\)

\(< =>\frac{2\sqrt{x}}{x-1}.\frac{x-1}{1}=2\sqrt{x}\)

chắc là đúng đấy ạ

8 tháng 7 2020

\(A=\frac{2}{\sqrt{2}+1}+\frac{1}{3+2\sqrt{2}}\)

\(=\frac{2\left(3+2\sqrt{2}\right)}{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}+\frac{\sqrt{2}+1}{\left(\sqrt{2}+1\right)\left(3+2\sqrt{2}\right)}\)

\(=\frac{6+4\sqrt{2}+\sqrt{2}+1}{3\sqrt{2}+2\sqrt{4}+3+2\sqrt{2}}=\frac{7+5\sqrt{2}}{3+4+5\sqrt{2}}=1\)

16 tháng 8 2017

mình giải nhé:

Ta có các số trong ngoặc có dạng: \(\sqrt{x\left(x+1\right)+\frac{1}{x+2}}< \sqrt{x\left(x+1\right)+\frac{1}{4}}\)chỗ này nếu bạn chưa hiểu mình sẽ nói nhé với \(x\ge3\)

Vậy đặt cả cái đề bài cần chứng minh là A. Ta có:

\(A< \sqrt{3.4+\frac{1}{4}}+\sqrt{4.5+\frac{1}{4}}+...+\sqrt{102.103+\frac{1}{4}}=3,5+4,5+...+102,5=5300\)

đấy là điều phải chứng minh nhé

16 tháng 8 2017

dùng xích ma giải đi v~~

11 tháng 10 2020

b) đk: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

pt (1) \(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+4\right)=0\Leftrightarrow x\left(x-2\right)\left(x^2-2x+4\right)=0\Leftrightarrow x=0\left(L\right),x=2\left(T\right)\)\(,x^2-2x+4=0\left(3\right)\)

pt(3) VÔ NGHIỆM vì \(\Delta'=1-4=-3< 0\)

Thay x=2 vào pt (2) ta được: \(\frac{1}{2}+\frac{1}{y-1}=\frac{3}{2}\Leftrightarrow\frac{1}{y-1}=1\Leftrightarrow y-1=1\Leftrightarrow x=2\left(tm\right)\)

Vậy nghiệm của hệ pt là(x;y)=(2;2)

1 tháng 8 2019

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)

1 tháng 8 2017

a. \(A=\frac{\left(\sqrt{x-2}\right)^2-3^2}{\sqrt{x-2}-3}=\frac{\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}+3\right)}{\sqrt{x-2}-3}=\sqrt{x-2}+3\)

b. \(B=\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}\)

\(=\frac{1-\sqrt{a}+1+\sqrt{a}}{2\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}=\frac{1}{1-a}-\frac{a^2+2}{\left(1-a\right)\left(a^2+a+1\right)}\)

\(=\frac{a^2+a+1-a^2-2}{\left(1-a\right)\left(a^2+a+1\right)}=\frac{a-1}{\left(1-a\right)\left(a^2+a+1\right)}=-\frac{1}{a^2+a+1}\)

1 tháng 8 2017

câu b là B=\(\frac{1}{2\left(1+\sqrt{a}\right)}+\frac{1}{2\left(1-\sqrt{a}\right)}-\frac{a^2+2}{1-a^3}\) nhé, em ghi nhầm