Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo ở câu hỏi này nhé :
Câu hỏi của Nguyễn Kim Chi - Toán lớp 6 | Học trực tuyến
quá dễ dàng
1.
\(A=\frac{1}{199}+\frac{2}{198}+...+\frac{199}{1}\)
cộng 1 vào mỗi phân số trong 198 phân số đầu, trừ phân số cuối đi 198 ta được :
\(A=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+...+\left(\frac{199}{1}-198\right)\)
\(A=\frac{200}{199}+\frac{200}{198}+...+1\)
\(A=\frac{200}{199}+\frac{200}{198}+...+\frac{200}{200}\)
đưa phân số cuối lên đầu ta được :
\(A=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)
\(A=200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{200.\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}}=200\)
2.
\(A=\frac{1}{1.400}+\frac{1}{2.401}+\frac{1}{3.402}+...+\frac{1}{101.500}\)
\(A=\frac{1}{400}.\left(1-\frac{1}{400}\right)+\frac{1}{400}.\left(\frac{1}{2}-\frac{1}{401}\right)+\frac{1}{400}.\left(\frac{1}{3}-\frac{1}{402}\right)+...+\frac{1}{400}.\left(\frac{1}{101}-\frac{1}{500}\right)\)
\(A=\frac{1}{400}.\left(1-\frac{1}{400}+\frac{1}{2}-\frac{1}{401}+\frac{1}{3}-\frac{1}{402}+...+\frac{1}{101}-\frac{1}{500}\right)\)
\(A=\frac{1}{400}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{101}-\frac{1}{400}-\frac{1}{401}-\frac{1}{402}-...-\frac{1}{500}\right)\)
\(B=\frac{1}{1.102}+\frac{1}{2.103}+\frac{1}{3.104}+...+\frac{1}{399.500}\)
\(B=\frac{1}{101}.\left(1-\frac{1}{102}\right)+\frac{1}{101}.\left(\frac{1}{2}-\frac{1}{103}\right)+\frac{1}{101}.\left(\frac{1}{3}-\frac{1}{104}\right)+...+\frac{1}{101}.\left(\frac{1}{399}-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1-\frac{1}{102}+\frac{1}{2}-\frac{1}{103}+\frac{1}{3}-\frac{1}{104}+...+\frac{1}{399}-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{399}-\frac{1}{102}-\frac{1}{103}-\frac{1}{104}-...-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1+\frac{1}{2}+...+\frac{1}{101}+\frac{1}{102}+...+\frac{1}{399}-\frac{1}{102}-...-\frac{1}{399}-\frac{1}{400}-...-\frac{1}{500}\right)\)
\(B=\frac{1}{101}.\left(1+\frac{1}{2}+...+\frac{1}{101}-\frac{1}{400}-...-\frac{1}{500}\right)\)
Ta thấy vế trong ngoặc của hai biểu thức A và B giống nhau, do đó :
\(\frac{A}{B}=\frac{\left(\frac{1}{400}\right)}{\left(\frac{1}{101}\right)}=\frac{101}{400}\)
Ta có :
\(B=\frac{308}{1}+\frac{307}{2}+\frac{306}{3}+...+\frac{3}{306}+\frac{2}{307}+\frac{1}{308}\)
\(B=\left(\frac{307}{2}+1\right)+\left(\frac{306}{3}+1\right)+...+\left(\frac{3}{306}+1\right)+\left(\frac{2}{307}+1\right)+\left(\frac{1}{308}+1\right)+1\)
\(B=\frac{309}{2}+\frac{309}{3}+...+\frac{309}{306}+\frac{309}{307}+\frac{309}{308}+\frac{309}{309}\)
\(B=309.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{306}+\frac{1}{307}+\frac{1}{308}+\frac{1}{309}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{308}+\frac{1}{309}}{309.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{308}+\frac{1}{309}\right)}\)
\(\frac{A}{B}=\frac{1}{309}\)
\(Tacocongthuc:\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n\left(n+k\right)}\)
\(A=\frac{1}{1.21}+\frac{1}{2.22}+...+\frac{1}{80.100}\Rightarrow20A=\frac{20}{1.21}+\frac{20}{2.22}+.....+\frac{20}{80.100}=1-\frac{1}{21}+\frac{1}{2}-\frac{1}{22}+.....+\frac{1}{80}-\frac{1}{100}=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}-\frac{1}{81}-\frac{1}{82}-....-\frac{1}{100}\)
\(B=\frac{1}{1.81}+\frac{1}{2.82}+.....+\frac{1}{20.100}\Rightarrow80B=\frac{80}{1.81}+\frac{80}{2.82}+....+\frac{80}{20.100}=1-\frac{1}{81}+\frac{1}{2}-\frac{1}{82}-....+\frac{1}{20}-\frac{1}{100}=1+\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{20}-\frac{1}{81}-\frac{1}{82}-.....-\frac{1}{100}\)
\(\Rightarrow20A=80B\Leftrightarrow A=4B\Rightarrow\frac{A}{B}=4\)
sao 1-1/21+1/2-1/22+1/3-1/23+...+1/80-1/100 lại bằng 1+1/2+1/3+...+1/20-1/81-1/82-...-1/100 đúng ra phải là 1+1/2+1/3+...+1/80-1/21-1/22-1/23-...-1/100