K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

=1 nhưng mình ko biết trình bày bạn nào làm biết trình bày thì viết hô mình nha ?

17 tháng 4 2019

DỄ VÃI CHƯỞNG

15 tháng 5 2020

Dễ mà ko làm được thì nghỉ học đi 

27 tháng 1 2018

Bạn có viết lộn đề ko ?

27 tháng 1 2018

No , I do not

21 tháng 4 2017

Ta có: \(5A=\frac{5^{2011}+5}{5^{2011}+1}=\frac{5^{2011}+1+4}{5^{2011}+1}=1+\frac{4}{5^{2011}+16}\)

\(5B=\frac{5^{2010}+5}{5^{2010}+1}=\frac{5^{2010}+1+4}{5^{2010}+1}=1+\frac{4}{5^{2010}+1}\)

\(\frac{4}{5^{2011}+1}< \frac{4}{5^{2010}+1}\Rightarrow5A< 5B\Rightarrow A< B\)

21 tháng 4 2017

Ta có:

A = \(\frac{5^{2010}+1}{5^{2011}+1}\)

\(\Rightarrow5A=\frac{5.\left(5^{2010}+1\right)}{5^{2011}+1}\)\(=\frac{5^{2011}+5}{5^{2011}+1}=1+\frac{4}{5^{2011}+1}\)

B=\(\frac{5^{2009}+1}{5^{2010}+1}\)

\(\Rightarrow5B=\frac{5.\left(5^{2009}+1\right)}{5^{2010}+1}=\frac{5^{2010}+5}{5^{2010}+1}=1+\frac{4}{5^{2010}+1}\)

Ta thấy \(5^{2011}+1>5^{2010}+1\)

\(\Rightarrow\frac{4}{5^{2011}+1}< \frac{4}{5^{2010}+1}\)

\(\Rightarrow1+\frac{4}{5^{2011}+1}< 1+\frac{4}{5^{2010}+1}\)

Hay 5.A<5.B

Vậy A<B (đpcm)

1 tháng 8 2018

\(a)\left(5^{2010}+5^{2012}+5^{2014}\right):\left(5^{2011}+5^{2009}+5^{2007}\right)\)

\(=\dfrac{5^{2007}\left(5^3+5^5+5^7\right)}{5^{2007}\left(5^4+5^2+1\right)}=\dfrac{5^3+5^5+5^7}{5^4+5^2+1}\)

\(=\dfrac{125+3125+78125}{625+25+1}=\dfrac{81375}{651}=125\)

\(b)-\dfrac{7}{45}+\dfrac{1}{4}+\dfrac{3}{5}+\dfrac{1}{12}+\dfrac{2}{3}+\dfrac{1}{39}+\dfrac{5}{9}\)

\(=\dfrac{-7.52+1.585+3.468+1.195+2.780+1.60-5.260}{2340}\)

\(=\dfrac{-364+585+1404+195+1560+60-1300}{2340}\)

\(=\dfrac{2140}{2340}=\dfrac{107}{117}\)

1 tháng 8 2018

câu a còn cách nào khác ko bn

13 tháng 2 2019

=\(\dfrac{1}{2009.\left(\dfrac{1}{2009}+\dfrac{1}{2011}+\dfrac{1}{2010}\right)}+\dfrac{1}{2010.\left(\dfrac{1}{2010}+\dfrac{1}{2009}+\dfrac{1}{2011}\right)}+\dfrac{1}{2011.\left(\dfrac{1}{2011}+\dfrac{1}{2009}+\dfrac{1}{2010}\right)}\)\(=\dfrac{1}{2009}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2010}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)+\dfrac{1}{2011}:\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)\)

\(=\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right):\left(\dfrac{1}{2009}+\dfrac{1}{2010}+\dfrac{1}{2011}\right)=1\)

3 tháng 4 2018

Ta có :

\(B=\frac{5^{2009}+1}{5^{2010}+1}=\frac{\left(5^{2009}+1\right).10}{\left(5^{2010}+1\right).10}=\frac{5^{2010}+10}{5^{2011}+10}\)

Ta thấy :

\(5^{2010}=5^{2010};1< 10\Rightarrow5^{2010}+1< 5^{2010}+10\)

\(5^{2011}=5^{2011};1< 10\Rightarrow5^{2011}+1< 5^{2011}+10\)

Suy ra : \(A< B\)

Vậy \(A< B\)

3 tháng 4 2018

\(A< 1\)

\(A< \frac{5^{2010}+1}{5^{2011}+1}\)

\(A< \frac{5^{2010}+1+4}{5^{2011}+1+4}\)

\(A< \frac{5^{2010}+5}{5^{2011}+5}\)

\(A< \frac{5\left(5^{2009}+1\right)}{5\left(5^{2010}+1\right)}\)

\(A< \frac{5^{2009}+1}{5^{2010}+1}\)

\(A< B\)