\(a,\dfrac{1}{x^2+3x+2}-\dfrac{3}{x^2-x-2}=\dfrac{-1}{x^2-4}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(x\notin\left\{-1;-2;2\right\}\)

Ta có: \(\dfrac{1}{x^2+3x+2}-\dfrac{3}{x^2-x-2}=\dfrac{-1}{x^2-4}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}-\dfrac{3}{\left(x-2\right)\left(x+1\right)}=\dfrac{-1}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\dfrac{x-2}{\left(x+1\right)\left(x+2\right)\left(x-2\right)}-\dfrac{3\left(x+2\right)}{\left(x+2\right)\left(x+1\right)\left(x-2\right)}=\dfrac{-1\left(x+1\right)}{\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x-2-3x-6=-x-1\)

\(\Leftrightarrow-2x-8+x+1=0\)

\(\Leftrightarrow-x-7=0\)

\(\Leftrightarrow-x=7\)

hay x=-7(thỏa ĐK)

Vậy: S={-7}

8 tháng 3 2021

a) ĐKXĐ: x∉{−1;−2;2}x∉{−1;−2;2}

Ta có: 1x2+3x+2−3x2−x−2=−1x2−41x2+3x+2−3x2−x−2=−1x2−4

⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)

⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)

Suy ra: x−2−3x−6=−x−1x−2−3x−6=−x−1

⇔−2x−8+x+1=0⇔−2x−8+x+1=0

⇔−x−7=0⇔−x−7=0

⇔−x=7⇔−x=7

hay x=-7(thỏa ĐK)

Vậy: S={-7}

Đọc tiếp

a) ĐKXĐ: x∉{−1;−2;2}x∉{−1;−2;2}

Ta có: 1x2+3x+2−3x2−x−2=−1x2−41x2+3x+2−3x2−x−2=−1x2−4

⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)⇔1(x+1)(x+2)−3(x−2)(x+1)=−1(x−2)(x+2)

⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)⇔x−2(x+1)(x+2)(x−2)−3(x+2)(x+2)(x+1)(x−2)=−1(x+1)(x+1)(x−2)(x+2)

Suy ra: x−2−3x−6=−x−1x−2−3x−6=−x−1

⇔−2x−8+x+1=0⇔−2x−8+x+1=0

⇔−x−7=0⇔−x−7=0

⇔−x=7⇔−x=7

hay x=-7(thỏa ĐK)

Vậy: S={-7}

Đọc tiếp

6 tháng 2 2018

1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)

ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)

\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)

\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )

\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)

vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn

28 tháng 6 2017

Phép trừ các phân thức đại số

30 tháng 4 2017

bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn

1 tháng 5 2017

giả pt á b

1 tháng 5 2017

ai giải giúp mk vs đg cần gấp

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

14 tháng 1 2019

a. \(\dfrac{6x+5}{2}-\dfrac{10x+3}{4}=2x+\dfrac{2x+1}{2}\)

\(\Leftrightarrow2\left(6x+5\right)-10x-3=8x+2\left(2x+1\right)\)

\(\Leftrightarrow12x+10-10x-3=8x+4x+2\)

\(\Leftrightarrow12x-10x-8x-4x=2-10+3\)

\(\Leftrightarrow-10x=-5\Leftrightarrow x=\dfrac{1}{2}\)

b. \(\left(x+1\right)^3-\left(x-1\right)^3=6\left(x^2+x+1\right)\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1=6x^2+6x+6\)

\(\Leftrightarrow6x^2+2=6x^2+6x+6\)

\(\Leftrightarrow6x^2-6x^2-6x=6-2\Leftrightarrow-6x=4\)

\(\Leftrightarrow x=\dfrac{-2}{3}\)

c. \(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)

\(\Leftrightarrow\left(\dfrac{x+2}{13}+1\right)+\left(\dfrac{2x+45}{15}-1\right)=\left(\dfrac{3x+8}{37}+1\right)+\left(\dfrac{4x+69}{9}-1\right)\)

\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)

\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)

\(\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)>0\)

\(\Leftrightarrow x+15=0\Leftrightarrow x=-15\)

11 tháng 4 2017

\(\dfrac{x}{x-1}-\dfrac{2x}{x^2-1}=0\left(ĐKXĐ:x\ne\pm1\right)\\ \Leftrightarrow\dfrac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\dfrac{2x}{\left(x-1\right)\left(x+1\right)}=0\\ \Rightarrow x^2+x-2x=0\\ \Leftrightarrow x^2-x=0\Leftrightarrow x\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\Rightarrow x=1\left(loại\right)\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={0}.

b)

\(\dfrac{\left(x+2\right)^2}{2x-3}-1=\dfrac{x^2+10}{2x-3}\left(ĐKXĐ:x\ne\dfrac{3}{2}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(x+2\right)^2+3-2x=x^2+10\\ \Leftrightarrow x^2+4x+4-2x-x^2=10-3\)

\(\Leftrightarrow2x+4=7\Leftrightarrow2x=7-4=3\Rightarrow x=\dfrac{3}{2}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

c)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\left(ĐKXĐ:x\ne\pm5\right)\)

\(\Leftrightarrow\dfrac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}-\dfrac{\left(x-5\right)^2}{\left(x+5\right)\left(x-5\right)}=\dfrac{20}{\left(x+5\right)\left(x-5\right)}\)

\(\Rightarrow\left(x+5\right)^2-\left(x-5\right)^2=20\)

\(\Leftrightarrow x^2+25x+25-x^2+25x-25=20\\ \Leftrightarrow50x=20\Rightarrow x=\dfrac{2}{5}\)

vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{2}{5}\right\}\)

d)\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\left(ĐKXĐ:x\ne\pm\dfrac{2}{3}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(3x+2\right)^2-6\left(3x-2\right)=9x^2\\ \Leftrightarrow9x^2+12x+4-18x+12-9x^2=0\\ \Leftrightarrow16-6x=0\Leftrightarrow6x=16\Rightarrow x=\dfrac{16}{6}\)

vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{16}{6}\right\}\)

e)\(\dfrac{3}{5x-1}+\dfrac{2}{3-5x}=\dfrac{4}{\left(1-5x\right)\left(5x-3\right)}\left(ĐKXĐ:x\ne\dfrac{1}{5};\dfrac{3}{5}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(3\left(3-5x\right)+2\left(5x-1\right)=4\\ \Leftrightarrow9-15x+10x-2=4\\ \Leftrightarrow-5x=-3\Rightarrow x=\dfrac{3}{5}\left(loại\right)\)

vậy phương trình đã cho vô nghiệm.

f)

\(\dfrac{3}{1-4x}=\dfrac{2}{4x+1}-\dfrac{8+6x}{16x^2-1}\left(ĐKXĐ:x\ne\pm\dfrac{1}{4}\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(-3\left(4x+1\right)=2\left(4x-1\right)-8-6x\\ \Leftrightarrow-12x-3=8x-2-8-6x\\ \Leftrightarrow-14x=-7\Rightarrow x=\dfrac{1}{2}\)

vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{1}{2}\right\}\)

g)

\(\dfrac{y-1}{y-2}-\dfrac{5}{y+2}=\dfrac{12}{y^2-4}+1\left(ĐKXĐ:y\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(y-1\right)\left(y+2\right)-5\left(y-2\right)=12+y^2-4\\ \Leftrightarrow y^2+y-2-5y+10=12+y^2-4\\ \Leftrightarrow-4y+8=8\Leftrightarrow-4y=0\Rightarrow y=0\)

vậy phương trình có tập nghiệm là S={0}

h)

\(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\left(ĐKXĐ:x\ne\pm1\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow x^2+2x+1-x^2+2x-1=4\\ \Leftrightarrow4x=4\Rightarrow x=1\)

vậy phương trình có tập nghiệm là S={1}.

i)

\(\dfrac{2x-3}{x+2}-\dfrac{x+2}{x-2}=\dfrac{2}{x^2-4}\left(ĐKXĐ:x\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(\left(2x-3\right)\left(x-2\right)-\left(x+2\right)=2\\ \Leftrightarrow2x^2-7x+6-x^2-4x-4=2\\ \Leftrightarrow x^2-11x=0\Rightarrow\left[{}\begin{matrix}x=0\\x-11=0\Rightarrow x=11\end{matrix}\right.\)

vậy phương trình có tập nghiệm là S={0;11}

j)

\(\dfrac{x-1}{x^2-4}=\dfrac{3}{2-x}\left(ĐKXĐ:x\ne\pm2\right)\)

quy đồng và khử mẫu phương trình trên, ta được:

\(x-1=-3\left(x+2\right)\Leftrightarrow x-1=-3x-6\\ \Leftrightarrow4x=5\Rightarrow x=\dfrac{5}{4}\)

vậy phương trình có tập nghiệm là \(S=\left\{\dfrac{5}{4}\right\}\)

11 tháng 4 2017

có tố chất đánh máy !!!eoeoeoeoleuleu

23 tháng 2 2019

Câu 1:

Hỏi đáp Toán

23 tháng 2 2019

Câu 2:

ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)

\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)

\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)

\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)

\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)

\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)

Vậy \(S=\left\{-1\right\}\)

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)