Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có:
\(\left(\dfrac{2}{5}+\dfrac{1}{5}\right)+\dfrac{1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)
\(\dfrac{2}{5}+\left(\dfrac{1}{5}+\dfrac{1}{5}\right)=\dfrac{2}{5}+\dfrac{2}{5}=\dfrac{4}{5}\)
\(\dfrac{4}{5}=\dfrac{4}{5}\). Vậy \(\left(\dfrac{2}{5}+\dfrac{1}{5}\right)+\dfrac{1}{5}=\dfrac{2}{5}+\left(\dfrac{1}{5}+\dfrac{1}{5}\right)\)
Ta có:
\(\left(\dfrac{2}{9}+\dfrac{5}{9}\right)+\dfrac{1}{9}=\dfrac{7}{9}+\dfrac{1}{9}=\dfrac{8}{9}\)
\(\dfrac{2}{9}+\left(\dfrac{5}{9}+\dfrac{1}{9}\right)=\dfrac{2}{9}+\dfrac{6}{9}=\dfrac{8}{9}\)
\(\dfrac{8}{9}=\dfrac{8}{9}\). Vậy \(\left(\dfrac{2}{9}+\dfrac{5}{9}\right)+\dfrac{1}{9}=\dfrac{2}{9}+\left(\dfrac{5}{9}+\dfrac{1}{9}\right)\)
b: \(\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\dfrac{4}{3}=\dfrac{3}{3}+\dfrac{4}{3}=\dfrac{7}{3}\)
\(\dfrac{1}{3}+\left(\dfrac{2}{3}+\dfrac{4}{3}\right)=\dfrac{1}{3}+\dfrac{6}{3}=\dfrac{7}{3}\)
\(\dfrac{7}{3}=\dfrac{7}{3}\). Vậy \(\left(\dfrac{1}{3}+\dfrac{2}{3}\right)+\dfrac{4}{3}=\dfrac{1}{3}+\left(\dfrac{2}{3}+\dfrac{4}{3}\right)\)
Đề của anh bị sai mới đúng chứ ạ? Anh Đạt ghi là \(\left(\dfrac{2}{9}+\dfrac{5}{9}\right)+\dfrac{1}{9}\) chứ có phải \(\dfrac{2}{5}\) đâu ạ?
\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{3+2}{6}-\dfrac{1}{5}=\dfrac{5}{6}-\dfrac{1}{5}=\dfrac{5\times5-6}{30}=\dfrac{19}{30}\\ \dfrac{1}{5}:4+\dfrac{3}{4}=\dfrac{1}{5}\times4+\dfrac{3}{4}=\dfrac{4}{5}+\dfrac{3}{4}=\dfrac{4\times4+3\times5}{20}=\dfrac{31}{20}\)
\(\dfrac{4}{3}\times\dfrac{9}{5}-\dfrac{3}{10}=\dfrac{36}{15}-\dfrac{3}{10}=\dfrac{12}{5}-\dfrac{3}{10}=\dfrac{12\times2-3}{10}=\dfrac{21}{10}\)
\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\)
= \(\dfrac{1\times15}{2\times15}\) + \(\dfrac{1\times10}{3\times10}\) - \(\dfrac{1\times6}{5\times6}\)
= \(\dfrac{15}{30}\) + \(\dfrac{10}{30}\) - \(\dfrac{6}{30}\)
= \(\dfrac{19}{30}\)
\(\dfrac{1}{5}\) : 4 + \(\dfrac{3}{4}\)
= \(\dfrac{1}{5}\) \(\times\) \(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)
= \(\dfrac{1}{20}\) + \(\dfrac{3\times5}{4\times5}\)
= \(\dfrac{1}{20}+\dfrac{15}{20}\)
= \(\dfrac{16}{20}\)
= \(\dfrac{4}{5}\)
\(\dfrac{4}{3}\) \(\times\) \(\dfrac{9}{5}\) - \(\dfrac{3}{10}\)
= \(\dfrac{12}{5}\) - \(\dfrac{3}{10}\)
= \(\dfrac{24}{10}\) - \(\dfrac{3}{10}\)
= \(\dfrac{21}{10}\)
a) \(1+\dfrac{4}{9}=\dfrac{9}{9}+\dfrac{4}{9}=\dfrac{9+4}{9}=\dfrac{13}{9}\)
b) \(5+\dfrac{1}{2}=\dfrac{10}{2}+\dfrac{1}{2}=\dfrac{10+1}{2}=\dfrac{11}{2}\)
c) \(3-\dfrac{5}{6}=\dfrac{18}{6}-\dfrac{5}{6}=\dfrac{18-5}{6}=\dfrac{13}{6}\)
d) \(\dfrac{31}{7}-2=\dfrac{31}{7}-\dfrac{14}{7}=\dfrac{31-14}{7}=\dfrac{17}{7}\)
a) \(\left(\dfrac{1}{4}+\dfrac{1}{12}\right):\dfrac{1}{13}\)
\(=\left(\dfrac{3}{12}+\dfrac{1}{12}\right):\dfrac{1}{13}\)
\(=\dfrac{4}{12}\times13\)
\(=\dfrac{1}{3}\times13\)
\(=\dfrac{13}{3}\)
b) \(\dfrac{3}{5}:\dfrac{2}{9}-\dfrac{1}{10}\)
\(=\dfrac{3}{5}\times\dfrac{9}{2}-\dfrac{1}{10}\)
\(=\dfrac{27}{10}-\dfrac{1}{10}\)
\(=\dfrac{26}{10}\)
\(=\dfrac{13}{5}\)
\(\dfrac{2}{5}\times\dfrac{3}{4}-\dfrac{1}{8}=\dfrac{1}{5}\times\dfrac{3}{2}-\dfrac{1}{8}=\dfrac{3}{10}-\dfrac{1}{8}=\dfrac{24}{80}-\dfrac{10}{80}=\dfrac{14}{80}=\dfrac{7}{40}\\ \dfrac{4}{3}+\dfrac{1}{3}-\dfrac{1}{5}=\dfrac{5}{3}-\dfrac{1}{5}=\dfrac{25}{15}-\dfrac{3}{15}=\dfrac{22}{15}\\ \dfrac{9}{20}-\dfrac{3}{5}\times\dfrac{1}{4}=\dfrac{9}{20}-\dfrac{3}{20}=\dfrac{6}{20}=\dfrac{3}{10}\\ \dfrac{2}{8}+\dfrac{2}{3}:\dfrac{4}{5}=\dfrac{2}{8}+\dfrac{2}{3}\times\dfrac{5}{4}=\dfrac{2}{8}+\dfrac{1}{3}\times\dfrac{5}{2}=\dfrac{2}{8}+\dfrac{5}{6}=\dfrac{1}{4}+\dfrac{5}{6}=\dfrac{6}{24}+\dfrac{20}{24}=\dfrac{26}{24}=\dfrac{13}{12}\)
a) $\frac{{14}}{{18}}:\frac{8}{9} = \frac{7}{9}:\frac{8}{9} = \frac{7}{9} \times \frac{9}{8} = \frac{{63}}{{72}} = \frac{7}{8}$
b) $\frac{9}{6}:\frac{3}{{10}} = \frac{3}{2}:\frac{3}{{10}} = \frac{3}{2} \times \frac{{10}}{3} = \frac{{30}}{6} = 5$
c) $\frac{4}{5}:\frac{{10}}{{15}} = \frac{4}{5}:\frac{2}{3} = \frac{4}{5} \times \frac{3}{2} = \frac{{12}}{{10}} = \frac{6}{5}$
d) $\frac{1}{6}:\frac{{21}}{9} = \frac{1}{6}:\frac{7}{3} = \frac{1}{6} \times \frac{3}{7} = \frac{3}{{42}} = \frac{1}{{14}}$