\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 3 2022

Lời giải:
\(5A=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{501-496}{496.501}\)

\(=\frac{6}{1.6}-\frac{1}{1.6}+\frac{11}{6.11}-\frac{6}{6.11}+\frac{16}{11.16}-\frac{11}{11.16}+...+\frac{501}{496.501}-\frac{496}{496.501}\)

\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{496}-\frac{1}{501}=1-\frac{1}{501}=\frac{500}{501}\)

$\Rightarrow A=\frac{100}{501}$

20 tháng 3 2022

\(A=\dfrac{1}{5}\left(\dfrac{1}{1.6}+...+\dfrac{1}{496.501}\right)\)

\(A=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\cdot\cdot\cdot+\dfrac{1}{495}-\dfrac{1}{501}\right)\)

\(A=\dfrac{1}{5}\left(1-\dfrac{1}{501}\right)\)

\(A=\dfrac{1}{5}\cdot\dfrac{500}{501}=\dfrac{100}{501}\)

1 tháng 6 2017

S = \(\dfrac{1}{1.4}\)+ \(\dfrac{1}{4.7}\)+...+\(\dfrac{1}{2002.2005}\)

S = ( 1 - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-...+\(\dfrac{1}{2002}\)-\(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = ( 1 - \(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = \(\dfrac{2004}{2005}\). \(\dfrac{1}{3}\)

S = \(\dfrac{2014}{6015}\)

1 tháng 6 2017

a) \(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{2002.2005}\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2002}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}.\dfrac{2004}{2005}=\dfrac{668}{2005}\)

KL.

b) \(P=\dfrac{3}{1.6}+\dfrac{3}{6.11}+\dfrac{3}{11.16}+...+\dfrac{3}{96.101}\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}.\dfrac{100}{101}=\dfrac{60}{101}\)

KL.

c) \(Q=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(=\dfrac{1}{2}.\dfrac{1}{19800}=\dfrac{1}{39600}\)

KL.

1 tháng 4 2017

\(\dfrac{1}{1\cdot6}+\dfrac{1}{6\cdot11}+\dfrac{1}{11\cdot16}+...+\dfrac{1}{\left(5n+1\right)\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)

\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)\(=\dfrac{1}{5}\cdot\left(\dfrac{5n+6}{5n+6}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{5\left(n+1\right)}{5n+6}=\dfrac{n+1}{5n+6}=VP\)

1 tháng 4 2017

Thank bn nhiều nha, nhưng mà cho mk hs Vp=? vậy ạ.ngaingung

2 tháng 4 2017

\(S=\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{96.101}\\ S=\dfrac{25}{1.6}+\dfrac{25}{6.11}+\dfrac{25}{11.16}+...+\dfrac{25}{96.101}\\ S=5.\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+...+\dfrac{5}{96.101}\right)\\ S=5.\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\\ S=5.\left(1-\dfrac{1}{101}\right)\\ S=5.\dfrac{100}{101}\\ S=\dfrac{500}{101}\)

1 tháng 6 2017

S=500/101

Huỳnh Huyền Linh làm đúng rùi!

20 tháng 4 2018

\(A=\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+....+\frac{1}{496}-\frac{1}{501}\right):5\)

\(A=\left(1-\frac{1}{501}\right):5\)

\(A=\frac{500}{501}:5=\frac{100}{501}\)

Ta có : \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.501}\)

    \(\Rightarrow\)  \(A=\frac{1}{5}\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{496}-\frac{1}{501}\right) \)

     \(\Rightarrow\)  \(A=\frac{1}{5}\left(1-\frac{1}{501}\right)\)

      \(\Rightarrow\)  \(A=\frac{1}{5}.\frac{501-1}{501}=\frac{1}{5}.\frac{500}{501}\)

       \(\Rightarrow\)  \(A=\frac{1.500}{5.501}=\frac{20}{1.501}=\frac{20}{501}\)     

                                               Vậy   \(A=\frac{20}{501}\)

15 tháng 4 2017

A=1/15-1/16+1/16-1/17+...+1/2016-1/2017

A=1/15-1/2017

A=2002/30255

15 tháng 4 2017

C=1/3[3/5.8+3/8.11+...+3/101.104]

C=1/3[1/5-1/8+1/8-1/11+...+1/101-1/104]

C=1/3[1/5-1/104]

C=1/3.99/520

C=33/520

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

a.

$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$

$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$

$=1-\frac{1}{1000}=\frac{999}{1000}$

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

b.

$5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{495.500}$

$=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{500-495}{495.500}$

$=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{495}-\frac{1}{500}$

$=1-\frac{1}{500}=\frac{499}{500}$

$\Rightarrow B=\frac{499}{500}: 5= \frac{499}{2500}$

1 tháng 3 2022

lỗi

1 tháng 3 2022

mik sửa r nhé

bài hay đấy để mk thử giải

à bạn xem lại câu a hộ mk với

26 tháng 7 2015

B = 1/1.6 + 1/6.11 + 1/11.16 + ... + 1/496.501

B x 5 = 5/1.6 + 5/6.11 + 5/11.16 + ... + 5/496.501

B x 5 = 1 - 1/6 + 1/6 - 1/11 + 1/11 - 1/16 + ... + 1/496 - 1/501

B x 5 = 1 - 1/501

B x 5 = 500/501

      B = 500/501 : 5

       B = 100/501