Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a:b:c=b:c:a\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\left(a+b+c\ne0\right)\)
=>a=b=c
=>(2a+9b+1945c)2009=(2a+9a+1945a)2009=(1956a)2009=19562009.a2009
19562009.a30.b4.c1975=19562009.a30.a4.a1975
=19562009.a2009
=> (2a + 9b + 1945c)2009 = 19562009.a30.b4.c1975
=>đpcm
a : b : c = b : c : a => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\). Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) => a = b = c
Ta có:VT = (2a + 9b+ 1945c)2009 = (2a+ 9a+ 1945a)2009 = 19520096a2009
VP = 19562009.a30.b4.c1975 = 19562009.a30.a4.a1975 = 19562009a2009
=> đpcm
a : b : c = b : c : a => \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\) => a = b = c
+) (2a + 9b + 1945c)2009 = (2a + 9a + 1945a)2009 = 19562009a2009
+) 19562009.a30.b4.c1995 = 19562009.a30.a4.a1995 = 19562009.a2009
=> (2a + 9b + 1945c)2009 = 19562009.a30.b4.c1995
=> đpcm
Ta có:
\(\dfrac{\overline{ab}}{b}=\dfrac{\overline{bc}}{c}=\dfrac{\overline{ca}}{a}\)
\(\Rightarrow\dfrac{10a}{b}+\dfrac{b}{b}=\dfrac{10b}{c}+\dfrac{c}{c}=\dfrac{10c}{a}+\dfrac{a}{a}\)
\(\Rightarrow\dfrac{10a}{b}+1=\dfrac{10b}{c}+1=\dfrac{10c}{a}+1\)
\(\Rightarrow\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{10a}{b}=\dfrac{10b}{c}=\dfrac{10c}{a}=\dfrac{10a+10b+10c}{b+c+a}=\dfrac{10\left(a+b+c\right)}{a+b+c}=10\)
\(\Rightarrow\left\{{}\begin{matrix}10a=10b\\10b=10c\\10c=10a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow\left(\overline{abc}\right)^{123}=\left(\overline{aaa}\right)^{123}\)(1)
\(\Rightarrow c=111^{123}.a^{40}.a^{41}.a^{42}=111^{123}.a^{123}=\left(111.a\right)^{123}=\left(\overline{aaa}\right)^{123}\)(2)
Từ (1) và (2) suy ra: \(\left(\overline{abc}\right)^{123}=111^{123}.a^{40}.b^{41}.c^{42}\)
\(A=1+5+5^2+5^3+...+5^{2008}+5^{2009}\)
\(5.A=5.(1+5+5^2+5^3+...+5^{2008}+5^{2009}) \)
\(5.A=5+5^2+5^3+5^4+...+5^{2009}+5^{2010}\)
\(5.A-A=4.A=(5+5^2+5^3+5^4+...+5^{2009}+5^{2010})-(1+5+5^2+5^3+...+5^{2008}+5^{2009})\)
\(4.A=5^{2010}-1\)
\(A=\frac{5^{2010}-1}{4}\)
\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)
\(2.B=2.(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)
\(2.B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)
\(2.B+B=3.B=(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3)+(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2)\)
\(3.B=2^{101}+2^2 \)
\(B=\frac{2^{101}+2^{2}}{3}\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-10^3)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...(1000-1000)...(1000-50^3)\)
\(C=(1000-1^3).(1000-2^3).(1000-3^3)...0...(1000-50^3)\)
\(C=0\)
Tick cho mình nha!!!
Chúc bạn học tốt!