\(a;b;c>0\&a+b+c=3abc.CMR:a^4b^4+b^4c^4+c^4a^4\ge3a^4b^4c^4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2019

Sử dụng bđt cô-si cho 3 số là ok

\(a^4b^4+b^4c^4+c^4a^4\ge3\sqrt[3]{a^4b^4b^4c^4c^4a^4}=3a^4b^4c^4\)

P/S: Cái gt hơi thừa thì phải ???

29 tháng 3 2019

Ấy chết pẹ , nhầm , bài nãy sai bỏ đi nha

NV
23 tháng 10 2020

Cộng vế với vế giả thiết:

\(a^2+4b+4+b^2+4c+4+c^2+4a+4=0\)

\(\Leftrightarrow\left(a^2+4a+4\right)+\left(b^2+4b+4\right)+\left(c^2+4c+4\right)=0\)

\(\Leftrightarrow\left(a+2\right)^2+\left(b+2\right)^2+\left(c+2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+2=0\\b+2=0\\c+2=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c=-2\)

\(\Rightarrow P=1+1+1=3\)

13 tháng 7 2020

\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)

13 tháng 7 2020

\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)

\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)

12 tháng 6 2017

Đặt \(b+c-a=2x;c+a-b=2y;a+b-c=2z\)\(\Rightarrow a=y+z;b=z+x;c=x+y\)

\(P=\dfrac{4a}{b+c-a}+\dfrac{4b}{c+a-b}+\dfrac{4c}{a+b-c}=\dfrac{4\left(y+z\right)}{2x}+\dfrac{4\left(z+x\right)}{2y}+\dfrac{4\left(x+y\right)}{2z}\)\(\Leftrightarrow\dfrac{2\left(y+z\right)}{x}+\dfrac{2\left(z+x\right)}{y}+\dfrac{2\left(x+y\right)}{z}=2\left(\dfrac{y}{x}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{x}{y}+\dfrac{x}{z}+\dfrac{y}{z}\right)\ge2.\left(2+2+2\right)=12\)

18 tháng 3 2019

Áp dụng bđt Cauchy-Schwarz:

\(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\ge\frac{\left(1+1+1\right)^2}{2a+b+c+a+2b+c+a+b+2c}=\frac{9}{4a+4b+4c}\)Dấu "=" xảy ra khi a=b=c

26 tháng 5 2018

tích đi rồi ta làm

26 tháng 5 2018

tích đi bạn

10 tháng 10 2017

1,

\(x^2+y^2+y^2=14\)

\(\Rightarrow\left(x+y+z\right)^2-2xy-2yz-2zx=14\)

\(\Rightarrow-2\left(xy+yz+zx\right)=14\)

\(\Rightarrow xy+yz+zx=-7\)

\(\Rightarrow\left(xy+yz+zx\right)^2=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2x^2yz+2xy^2z+2xyz^2=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2+2xyz\left(x+y+z\right)=49\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2=49\)

Ta có: \(x^4+y^4+z^4\)

\(=\left(x^2+y^2+z^2\right)^2-2x^2y^2-2y^2z^2-2z^2x^2\)

\(=14^2-2\left(x^2y^2+y^2z^2+z^2x^2\right)\)

\(=14^2-2.49\)

\(=196-98\)

\(=98\)

9 tháng 4 2017

dạng này chắc chắc là phải dùng AM-GM ngược dấu rồi :)

Ta có:

\(\dfrac{1+b}{1+4a^2}=1+b-\dfrac{4a^2\left(b+1\right)}{4a^2+1}\ge1+b-\dfrac{4a^2\left(b+1\right)}{4a}=1+b-a\left(b+1\right)\)

Tương tự cho 2 BĐT còn lại ta có:

\(\dfrac{1+c}{1+4b^2}\ge1+c-b\left(c+1\right);\dfrac{1+a}{1+4c^2}\ge1+a-c\left(a+1\right)\)

Cộng theo vế 3 BĐT trên ta có:

\(VT=\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+c^2}\)

\(\ge3+\left(a+b+c\right)-\left(ab+bc+ca\right)-\left(a+b+c\right)\)

\(=3-\dfrac{1}{3}\left(a+b+c\right)^2=3-\dfrac{1}{3}\cdot\dfrac{9}{4}=\dfrac{9}{4}=VP\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{2}\)

9 tháng 4 2017

\(VT=\left(\dfrac{a}{1+4c^2}+\dfrac{b}{1+4a^2}+\dfrac{c}{1+4b^2}\right)+\left(\dfrac{1}{1+4c^2}+\dfrac{1}{1+4a^2}+\dfrac{1}{1+4b^2}\right)\)

\(VT=\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)+3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)

Xét \(\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2a}{1+4c^2}\le\dfrac{4c^2a}{4c}=ca\\\dfrac{4a^2b}{1+4a^2}\le\dfrac{4a^2b}{4a}=ab\\\dfrac{4b^2c}{1+4b^2}\le\dfrac{4b^2c}{4b}=bc\end{matrix}\right.\)

\(\Rightarrow\dfrac{3}{2}-\left(\dfrac{4c^2a}{1+4c^2}+\dfrac{4a^2b}{1+4a^2}+\dfrac{4b^2c}{1+4b^2}\right)\ge\dfrac{3}{2}-\left(ab+bc+ca\right)\) (1)

Xét \(3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\left\{{}\begin{matrix}1+4c^2\ge2\sqrt{4c^2}=4c\\1+4a^2\ge2\sqrt{4a^2}=4a\\1+4b^2\ge2\sqrt{4b^2}=4b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4c^2}{1+4c^2}\le\dfrac{4c^2}{4c}=c\\\dfrac{4a^2}{1+4a^2}\le\dfrac{4a^2}{4a}=a\\\dfrac{4b^2}{1+4b^2}\le\dfrac{4b^2}{4b}=b\end{matrix}\right.\)

\(\Rightarrow3-\left(\dfrac{4c^2}{1+4c^2}+\dfrac{4a^2}{1+4a^2}+\dfrac{4b^2}{1+4b^2}\right)\ge\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow VT\ge\dfrac{3}{2}-\left(ab+bc+ca\right)+\dfrac{3}{2}\)

\(\Rightarrow VT\ge3-\left(ab+bc+ca\right)\) (3)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{3}{4}\ge ab+bc+ca\)

\(\Rightarrow3-\dfrac{3}{4}\le3-\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{9}{4}\le3-\left(ab+bc+ca\right)\) (4)

Từ (3) và (4)

\(\Rightarrow VT\ge\dfrac{9}{4}\)

\(\Leftrightarrow\dfrac{1+b}{1+4a^2}+\dfrac{1+c}{1+4b^2}+\dfrac{1+a}{1+4c^2}\ge\dfrac{9}{4}\) (đpcm)

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{2}\)