Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:a/b<c/d<=>a.d<b.c
<=>2018a.d<2018b.c
<=>2018a.d+c.d<2018b.c+d.c
<=>d(2018a+c)<c(2018b+d)
<=>2018a+c/2018b+d<c/d(dpcm)
Ta có: Để \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\Rightarrow\left(2018\cdot a+c\right)\cdot d< \left(2018\cdot b+d\right)\cdot c\)
\(2018\cdot a\cdot d+c\cdot d< 2018\cdot b\cdot c+c\cdot d\)
\(2018\cdot a\cdot d< 2018\cdot b\cdot c\)(bỏ cả 2 vế đi \(c\cdot d\))(gọi là (1))
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow a\cdot d< b\cdot c\Rightarrow2018\cdot a\cdot d< 2018\cdot b\cdot c=\left(1\right)\)Mà (1) bằng \(\frac{2018\cdot a+c}{2018\cdot b+d}< \frac{c}{d}\) (điều phải chứng minh)
Có \(\frac{a}{b}< \frac{c}{d}=>a.d< c.b\)
<=>2018a.d<2018c.b
<=>2018a.d+c.d<2018c.b+c.d
<=>d(2018a+c)<c(2018b+d)
<=>đpcm
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow2019ad< 2019bc\)
\(\Leftrightarrow2019ad+cd< 2019bc+cd\)
\(\Leftrightarrow d\left(2019a+c\right)< c\left(2019b+d\right)\)
\(\Leftrightarrow\frac{2019a+c}{2019b+d}< \frac{c}{d}\)
Vì \(\frac{a}{b}< \frac{c}{d}\)
⇒ \(ad< bc\)
⇒ \(2018ad< 2018bc\)
⇒ \(2018ad+cd< 2018bc+cd\)
⇒ \(\left(2018a+c\right)d< \left(2018b+d\right)c\)
⇒ \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\)
Vậy \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\) (ĐPCM)
Ta có : \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\) ( 1 )
\(\Rightarrow ad+ab< bc+ab\)
\(\Rightarrow a\left(d+b\right)< b\left(a+c\right)\)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Vì \(b>0,d>0,\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow\frac{a}{b}< \frac{c}{d}=ad< bc\)
\(\Rightarrow ad+cd< bc+cd\) ( 2 )
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow2018ad< 2018bc\)
\(\Leftrightarrow2018ad+cd< 2018bc+cd\)
\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)
\(\Leftrightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)
Vì a/b < c/d (Với a,b,c,d thuộc N*)
=> ad<bc
=> 2018ad < 2018bc
=> 2018ad + cd < 2018bc +cd
=> (2018a + c).d < (2018b+d).c
=> 2018a +c / 2018b + d < c/d