K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a ta có: \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2) => đpcm

31 tháng 8 2018

a, \(\frac{a}{b}=\frac{ad}{bd};\frac{c}{d}=\frac{bc}{bd}\)

Mà \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\)

b, Theo câu a, ta có:

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\Rightarrow ad+ab< bc+ab\Rightarrow a\left(b+d\right)< b\left(a+c\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\)(1)

Lại có: \(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\)(2)

Từ (1) và (2) => đpcm.

3 tháng 7 2016

chứng minh ak bạn

18 tháng 6 2017

Ta có: a < b => 2a < a + b       (1)

          c < d => 2c < c + d     (2)

          e < f => 2e < e + f      (3)

Cộng ba vế (1),(2),(3) lại ta được:

2a + 2c + 2e < a + b + c + d + e + f

=> 2(a + c + e)  < a + b + c + d + e + f

=> \(\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\) (đpcm)

8 tháng 6 2016

Theo đề bài ta có:

a<b; c<d;e<f nên cộng vế với vế ta được:

a+c+e<b+d+f

<=>a+c+e+a+c+e<b+d+f+a+c+e

<=>2(a+c+e)<a+b+c+d+e+f

<=>\(\frac{a+c+e}{a+b+c+d+e+f}< \frac{1}{2}\)(ĐPCM)

26 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)

Ta có:

\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)

27 tháng 10 2017

Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học. vui

16 tháng 10 2019

Bài 1:

a) \(x^2\le x\)

\(\Leftrightarrow x^2-x\le0\)

\(\Leftrightarrow x\left(x-1\right)\le0\)

Mà x > x - 1 nên \(\hept{\begin{cases}x\ge0\\x-1\le0\end{cases}}\Leftrightarrow0\le x\le1\)

b) \(\hept{\begin{cases}ab=2\\bc=3\\ac=54\end{cases}}\Rightarrow\left(abc\right)^2=324=\left(\pm18\right)^2\)

\(TH1:abc=18\Rightarrow\hept{\begin{cases}c=9\\a=6\\b=\frac{1}{3}\end{cases}}\)

\(TH2:abc=-18\Rightarrow\hept{\begin{cases}c=-9\\a=-6\\b=\frac{-1}{3}\end{cases}}\)