Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=5+5^3+5^5+....+5^{47}+5^{49}\)
\(\Rightarrow5^2A=5^3+5^5+5^7+.....+5^{49}+5^{51}\)
\(\Rightarrow5^2A-A=\left(5^3+5^5+5^7+....+5^{49}+5^{51}\right)-\left(3+3^3+3^5+....+5^{47}+5^{49}\right)\)
\(\Rightarrow24A=5^{51}-5\)
\(\Rightarrow A=\dfrac{5^{51}-5}{24}\)
Vậy ............................................................
1)a) \(\left(3x-7\right)^5=32\Rightarrow\left(3x-7\right)^5=2^5\)
\(\Rightarrow3x-7=2\Rightarrow3x=9\Rightarrow x=3\)
Vậy \(x=3\)
b) \(\left(4x-1\right)^3=-27.125\)
\(\Rightarrow\left(4x-1\right)^3=-3^3.5^3=-15^3\)
\(\Rightarrow4x-1=-15\Rightarrow4x=-14\Rightarrow x=-3,5\)
Vậy \(x=-3,5\)
c) \(3^{4x+4}=81^{x+3}\Rightarrow3^{4x+4}=3^{4x+12}\)
\(\Rightarrow4x+4=4x+12\)
\(\Rightarrow4x=4x+8\)
\(\Rightarrow x\in\varnothing\)
d) \(\left(x-5\right)^7=\left(x-5\right)^9\)
\(\Rightarrow\left(x-5\right)^7-\left(x-5\right)^9=0\)
\(\Rightarrow\left(x-5\right)^7.\left[1-\left(x-5\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-5\right)^7=0\\1-\left(x-5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=5\\x-5=-1\\x-5=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=5\\x=4\\x=6\end{matrix}\right.\)
Bài 1 :
a/ \(a^3.a^9=a^{3+9}=a^{12}\)
b/\(\left(a^5\right)^7=a^{5.7}=a^{35}\)
c/ \(\left(a^6\right).4.a^{12}=a^{24}.a^{12}.4=a^{24+12}.4=a^{36}.4\)
d/ \(\left(2^3\right)^5.\left(2^3\right)^3=2^{15}.2^9=2^{15+9}=2^{24}\)
e/ \(5^6:5^3+3^3.3^2\)
\(=5^3+3^5=125+243=368\)
i/ \(4.5^2-2.3^2\)
\(=2^2.5^2-2.3^2\)
\(=2^2.25-2^2.14\)
\(=2^2.\left(25-14\right)\)
\(=2^2.11\)
\(=4.11=44\)
Bài 1 :
a, Ta có : \(\left(-123\right)+\left|-13\right|+\left(-7\right)\)
= \(\left(-123\right)+13+\left(-7\right)=\left(-117\right)\)
b, Ta có : \(\left|-10\right|+\left|45\right|+\left(-\left|-455\right|\right)+\left|-750\right|\)
= \(10+45-455+750=350\)
c, Ta có : \(-\left|-33\right|+\left(-15\right)+20-\left|45-40\right|-57\)
= \(\left(-33\right)+\left(-15\right)+20-5-57=-90\)
a, 23+4+5+6+7+8+9+10 =252
b,32+3+4+5 =314
c,42+3+4 =49
d,52+3+4 =59
e,62+3+4 =69
nhớ tich đúng nhé
Tính giá trị các lũy thừa sau
a)23,24 ,25, 26 ,27 ,28,29,210 = 252
b)32,33,34,35 = 314
c)42,43,44 = 49
d)52,53,54 =59
e)62,63,64 =69
bài 1) a) \(1+2+3+4+........+2005+2006\)
\(\Leftrightarrow\) \(\left(1+2006\right)+\left(2+2005\right)+........+\left(1003+1004\right)\)
\(\Leftrightarrow\) \(2007.\dfrac{2006}{2}=2007.1003=2013021\)
b) \(5+10+15+.......+2000+2005\)
\(\Leftrightarrow\) \(\left(2005+5\right)\left(2000+10\right)+.......+\left(1000+1010\right)\)
\(\Leftrightarrow\) \(2010.\dfrac{2005}{5}=2010.401=405010\)
c) \(140+136+132+.......+64+60\)
\(\Leftrightarrow\) \(\left(140+60\right)+\left(136+64\right)+.......+\left(100+100\right)\)
\(\Leftrightarrow\) \(200.10\) = \(2000\)
1)
a) \(1+2+3+4+.....+2005+2006\)
Số các số hạng của dãy trên là:
\((2006-1):1+1=2006\)
Tổng dãy là:
\(\dfrac{2006\left(2006+1\right)}{2}=2013021\)
b) \(5+10+15+.....+2000+2005\)
Số các số hạng của dãy là:
\((2005-5):5+1=401\)
Tổng dãy là:
\(\dfrac{401\left(2005+5\right)}{2}=403005\)
c)\(140+136+132+.....+64+60\)
\(=60+64+.....+132+136+140\)
Số số hạng của dãy là:
\((140-60):4+1=11\)
Tổng dãy là:
\(\dfrac{11\left(60+140\right)}{2}=1100\)
\(a=2^3.3^2+2^3\)
\(a=2^3.\left(3^2+1\right)\)
\(a=8.\left(9+1\right)\)
\(a=8.10=80\)
\(\Rightarrow\left|a\right|=80\)
\(\Rightarrow\orbr{\begin{cases}a=80\\a=-80\end{cases}}\)
2)
\(\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+....+\left(2^2+2\right)\)
\(=2^9.\left(2+1\right)+2^7.\left(2+1\right)+...+2.\left(2+1\right)\)
\(=2^9.3+2^7.3+...+2.3\)
\(=3.\left(2^9+2^7+...+2\right)⋮3\)
P/S: mấy bài khác tương tự
\(a,2^{10}+2^9+2^8+...+2\)
\(=\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+...+\left(2^2+2\right)\)
\(=2^9\left(2+1\right)+2^7\left(2+1\right)+...+2\left(2+1\right)\)
\(=2^9.3+2^7.3+...+2.3\)
\(=3\left(2^9+2^7+...+2\right)⋮3\left(đpcm\right)\)
\(b,1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2.4+...+3^{98}.4\)
\(=4\left(1+3^2+...+3^{98}\right)⋮4\left(đpcm\right)\)
\(c,1+5+5^2+5^3+...+5^{1975}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{1974}+5^{1975}\right)\)
\(=6+5^2\left(1+5\right)+...+5^{1974}\left(1+5\right)\)
\(=6+5^2.6+...+5^{1974}.6\)
\(=6\left(1+5^2+...+5^{1974}\right)⋮6\left(đpcm\right)\)
k) \(2x-49=5.3^2\)
\(2x-49=45\)
\(2x=49+45\)
\(2x=94\)
\(x=47\)
l) \(3^2.\left(x+14\right)-5^2=5.2^2\)
\(9.\left(x+14\right)-25=20\)
\(9.\left(x+14\right)=45\)
\(x+14=5\)
\(x=-9\)
m) \(6x+x=5^{11}:5^9+3^1\)
\(7x=5^{11-9}+3\)
\(7x=5^2+3\)
\(7x=28\)
\(x=4\)
n) \(7x-x=5^{21}:5^{19}+3.2^2-\left(-7^{-0}\right)\)
\(6x=5^{21-19}+12-1\)
\(6x=5^2+11\)
\(6x=36\)
\(x=6\)
o) \(7x-2x=6^{17}:6^{15}+44:11\)
\(5x=6^{17-15}+4\)
\(5x=6^2+4\)
\(5x=40\)
\(x=8\)
o)7x-x=521:519+3.22-70
=> 6x = 5^2 + 12 -1
=> 6x = 36
=> x = 36/6 = 6
Kết quả 6
Học tốt