Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
\(=a^3b-a^3c+b^3\left(c-a\right)+c^3a-c^3b\)
\(=\left(a^3b-c^3b\right)+\left(c^3a-a^3c\right)+b^3\left(c-a\right)\)
\(=-b\left(c^3-a^3\right)+ca\left(c^2-a^2\right)+b^3\left(c-a\right)\)
\(=-b\left(c-a\right)\left(c^2-ac+a^2\right)+ca\left(c+a\right)\left(c-a\right)+b^3\left(c-a\right)\)
\(=\left(c-a\right)\left(-c^2b+abc-a^2b\right)+\left(c-a\right)\left(c^2a+ca^2\right)+b^3\left(c-a\right)\)
\(=\left(c-a\right)\left(-c^2b+abc-a^2b+c^2a+ca^2+b^3\right)\)
a) a3 (b-c) + b3 (c-a) +c3 (a-b)
<=> a3b – a3c +b3c – b3a + c3a – c3b
<=> b(a3 – c3) +c(a3 – b3) + a(b3 - c3)
(Tự áp dụng hằng đẳng thức)
b)
\(ab\left(a^2-b^2\right)+bc\left(b^2-c^2\right)+ca\left(c^2-a^2\right)\)
\(=a^3b-ab^3+b^3c-bc^3-ca\left(a^2-c^2\right)\)
\(=b\left(a^3-c^3\right)-b^3\left(a-c\right)-ca\left(a-c\right)\left(a+c\right)\)
\(=b\left(a-c\right)\left(a^2+ac+c^2\right)-b^3\left(a-c\right)-ca\left(a-c\right)\left(a+c\right)\)
\(=\left(a-c\right)\left(a^2b+abc+bc^2-b^3-a^2c-c^2a\right)\)
\(=\left(a-c\right)\left[b\left(a^2-b^2\right)+ac\left(b-a\right)+c^2\left(b-a\right)\right]\)
\(=\left(a-c\right)\left[b\left(a-b\right)\left(a+b\right)-ac\left(a-b\right)-c^2\left(a-b\right)\right]\)
\(=\left(a-c\right)\left(a-b\right)\left(ab+b^2-ac-c^2\right)\)
\(=\left(a-c\right)\left(a-b\right)\left[a\left(b-c\right)+\left(b-c\right)\left(b+c\right)\right]\)
\(=\left(a-c\right)\left(a-b\right)\left(b-c\right)\left(a+b+c\right)\)
\(a^3\left(b-c\right)+b^3\left(c-a\right)+c^3\left(a-b\right)\)
\(=a^3\left(b-c\right)-b^3.\left[b-c+a-b\right]+c^3\left(a-b\right)\)
\(=a^3\left(b-c\right)-b^3\left(b-c\right)-b^3\left(a-b\right)+c^3\left(a-b\right)\)
\(=\left(b-c\right)\left(a^3-b^3\right)-\left(a-b\right)\left(b^3-c^3\right)\)
\(=\left(b-c\right)\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)\left(b-c\right)\left(b^2+bc+c^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a^2+ab+b^2-b^2-bc-c^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left(a^2+ab-bc-c^2\right)\)
\(=\left(a-b\right)\left(b-c\right)\left[\left(a-c\right)\left(a+c\right)+b\left(a-c\right)\right]\)
\(=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)
Chúc bạn học tốt.