\(a^3b+ab^3+2a^2b+2a+2b+1=0\)

Cmr \(1-ab\) là bình...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 
3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 Đúng 3  Sai 0 Sky Blue đã chọn câu trả lời này.
 
AH
Akai Haruma
Giáo viên
30 tháng 9 2020

e)

$x^3+6x^2+12x+8=x^3+3.2.x^2+3.2^2.x+2^3=(x+2)^3$
f)

$a^3-2a^2-ab^2+2b^2=(a^3-ab^2)-(2a^2-2b^2)$

$=a(a^2-b^2)-2(a^2-b^2)=(a^2-b^2)(a-2)=(a-b)(a+b)(a-2)$

g)

$2a^2x-2a^2-2abx+4ab-2b^2=(2a^2x-2abx)-(2a^2-4ab+2b^2)$

$=2ax(a-b)-2(a-b)^2=2(a-b)(ax-a+b)$

h)

\(x^2-2xy+y^2-25=(x-y)^2-25=(x-y)^2-5^2=(x-y+5)(x-y-5)\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

a)

$4x^2-40x^4+100x^3=4x^2(1-10x^2+25x)$

b)

\(3xy(x-5)-7x+35=3xy(x-5)-7(x-5)\)

\(=(x-5)(3xy-7)\)

c)

\(a^2-am-b^2-bm=(a^2-b^2)-(am+bm)=(a-b)(a+b)-m(a+b)\)

\(=(a+b)(a-b-m)\)

d)

\(x^3-4x-x^2y+4y=(x^3-x^2y)-(4x-4y)\)

\(=x^2(x-y)-4(x-y)=(x^2-4)(x-y)=(x-2)(x+2)(x-y)\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2018

Lời giải:

Từ \(a+b+c+ab+bc+ac=0\)

\(\Rightarrow a+b+c+ab+bc+ac+abc+1=1\)

\(\Leftrightarrow (a+1)(b+1)(c+1)=1\)

Đặt \(\left\{\begin{matrix} a+1=x\\ b+1=y\\ c+1=z\end{matrix}\right.\Rightarrow xyz=1\)

Biểu thức trở thành:

\(A=\frac{1}{(a+2)+a+b+ab+1}+\frac{1}{(b+2)+b+c+bc+1}+\frac{1}{(c+2)+c+a+ac+1}\)

\(A=\frac{1}{(a+2)+(a+1)(b+1)}+\frac{1}{(b+2)+(b+1)(c+1)}+\frac{1}{(c+2)+(c+1)(a+1)}\)

\(A=\frac{1}{x+1+xy}+\frac{1}{y+1+yz}+\frac{1}{z+1+zx}\)

\(A=\frac{z}{xz+z+xyz}+\frac{zx}{yxz+xz+yz.xz}+\frac{1}{z+1+xz}\)

hay \(A=\frac{z}{xz+z+1}+\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}\) (thay \(xyz=1\))

\(\Leftrightarrow A=\frac{z+xz+1}{xz+z+1}=1\)

Vậy \(A=1\)

22 tháng 2 2018

hay ghe

co gioi that