Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
e)
$x^3+6x^2+12x+8=x^3+3.2.x^2+3.2^2.x+2^3=(x+2)^3$
f)
$a^3-2a^2-ab^2+2b^2=(a^3-ab^2)-(2a^2-2b^2)$
$=a(a^2-b^2)-2(a^2-b^2)=(a^2-b^2)(a-2)=(a-b)(a+b)(a-2)$
g)
$2a^2x-2a^2-2abx+4ab-2b^2=(2a^2x-2abx)-(2a^2-4ab+2b^2)$
$=2ax(a-b)-2(a-b)^2=2(a-b)(ax-a+b)$
h)
\(x^2-2xy+y^2-25=(x-y)^2-25=(x-y)^2-5^2=(x-y+5)(x-y-5)\)
a)
$4x^2-40x^4+100x^3=4x^2(1-10x^2+25x)$
b)
\(3xy(x-5)-7x+35=3xy(x-5)-7(x-5)\)
\(=(x-5)(3xy-7)\)
c)
\(a^2-am-b^2-bm=(a^2-b^2)-(am+bm)=(a-b)(a+b)-m(a+b)\)
\(=(a+b)(a-b-m)\)
d)
\(x^3-4x-x^2y+4y=(x^3-x^2y)-(4x-4y)\)
\(=x^2(x-y)-4(x-y)=(x^2-4)(x-y)=(x-2)(x+2)(x-y)\)
Lời giải:
Từ \(a+b+c+ab+bc+ac=0\)
\(\Rightarrow a+b+c+ab+bc+ac+abc+1=1\)
\(\Leftrightarrow (a+1)(b+1)(c+1)=1\)
Đặt \(\left\{\begin{matrix} a+1=x\\ b+1=y\\ c+1=z\end{matrix}\right.\Rightarrow xyz=1\)
Biểu thức trở thành:
\(A=\frac{1}{(a+2)+a+b+ab+1}+\frac{1}{(b+2)+b+c+bc+1}+\frac{1}{(c+2)+c+a+ac+1}\)
\(A=\frac{1}{(a+2)+(a+1)(b+1)}+\frac{1}{(b+2)+(b+1)(c+1)}+\frac{1}{(c+2)+(c+1)(a+1)}\)
\(A=\frac{1}{x+1+xy}+\frac{1}{y+1+yz}+\frac{1}{z+1+zx}\)
\(A=\frac{z}{xz+z+xyz}+\frac{zx}{yxz+xz+yz.xz}+\frac{1}{z+1+xz}\)
hay \(A=\frac{z}{xz+z+1}+\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}\) (thay \(xyz=1\))
\(\Leftrightarrow A=\frac{z+xz+1}{xz+z+1}=1\)
Vậy \(A=1\)