K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

\(A=\dfrac{3}{5\cdot10}+\dfrac{3}{10\cdot15}+...+\dfrac{3}{95\cdot100}\)

\(=\dfrac{3}{5}\left(\dfrac{5}{5\cdot10}+\dfrac{5}{10\cdot15}+...+\dfrac{5}{95\cdot100}\right)\)

\(=\dfrac{3}{5}\left(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+...+\dfrac{1}{95}-\dfrac{1}{100}\right)\)

\(=\dfrac{3}{5}\left(\dfrac{1}{5}-\dfrac{1}{100}\right)\)\(=\dfrac{3}{5}\cdot\dfrac{19}{100}=\dfrac{57}{500}\)

27 tháng 6 2017

\(A=\dfrac{3}{5.10}+\dfrac{3}{10.15}+.....+\dfrac{3}{95.100}\)

\(A=\dfrac{3}{5}\left(\dfrac{1}{5}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{15}+.....+\dfrac{1}{95}-\dfrac{1}{100}\right)\)

\(A=\dfrac{3}{5}\left(\dfrac{1}{5}-\dfrac{1}{100}\right)\)

\(=\dfrac{3}{5}.\dfrac{19}{100}=\dfrac{19}{500}\)

27 tháng 6 2018

\(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-...-\frac{1}{95.100}\)

\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)

\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{95}-\frac{1}{100}\right)\)

\(=1-\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)\)

\(=1-\frac{1}{5}.\frac{19}{100}\)

\(=1-\frac{19}{500}\)

\(=\frac{481}{500}\)

27 tháng 6 2018

\(1-\frac{1}{5.10}-\frac{1}{10.15}-\frac{1}{15.20}-.....-\frac{1}{95.100}\)

\(=1-\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{95.100}\right)\)

Đặt \(C=\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+....+\frac{1}{95.100}\)

\(\Rightarrow C=\frac{1}{5}.\left(\frac{5}{5.10}+\frac{5}{10.15}+\frac{5}{15.20}+....+\frac{5}{95.100}\right)\)

           \(=\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+....+\frac{1}{95}-\frac{1}{100}\right)\)

             \(=\frac{1}{5}.\left(\frac{1}{5}-\frac{1}{100}\right)=\frac{1}{5}.\frac{19}{100}=\frac{19}{500}\)

\(\Rightarrow1-C=1-\frac{19}{500}=\frac{481}{500}\)

Chúc bạn học tốt

11 tháng 3 2017

C=1/5.10+1/10.15+...+1/95.100

   = 5/5.10+5/10.15+...+5/95.100

   = 1/5-1/10+1/10-1/15+...+1/95-1/100

   = 1/5-1/100

   = 19/100

11 tháng 3 2017

\(C=5\times\left(1+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+..+\frac{1}{95}-\frac{1}{100}\right)\)

\(C=5\times\left(1-\frac{1}{100}\right)\)

\(C=5\times\frac{99}{100}\)

\(C=\frac{99}{20}\)

8 tháng 8 2018

\(B=\frac{5}{5\cdot10}+\frac{5}{10\cdot15}+...+\frac{5}{95\cdot100}\)

\(B=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)

\(B=\frac{1}{5}-\frac{1}{100}\)

\(B=\frac{19}{100}\)

8 tháng 8 2018

\(B=\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)

\(B=\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)

\(B=\frac{1}{5}-\frac{1}{100}\)

\(B=\frac{19}{100}\)

14 tháng 8 2015

\(a=3\left(\frac{1}{5.10}+\frac{1}{10.15}+...+\frac{1}{45.50}\right)\)

\(a=\frac{3}{5}\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{45.50}\right)\)

\(a=\frac{3}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{45}-\frac{1}{50}\right)\)

\(a=\frac{3}{5}.\left(\frac{1}{5}-\frac{1}{50}\right)\)

\(a=\frac{3}{5}\cdot\frac{9}{50}\)

\(a=\frac{27}{250}\)

17 tháng 7 2018

\(A=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+...+\frac{1}{95.100}\)

\(\Rightarrow\)\(5A=1+\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{95.100}\)

               \(=1+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{95}-\frac{1}{100}\)

              \(=1+\frac{1}{5}-\frac{1}{100}=\frac{119}{100}\)

\(\Rightarrow\)\(A=\frac{119}{500}\)

17 tháng 7 2018

A=1/1.5+1/5.10+....+1/95.100

=(5/1.5+5/5.10+...+5/95.100):5

=(1-1/5+1/5-1/10+...+1/95-1/100):5

=(1-1/100):5

=99/100:5

=99/500

31 tháng 8 2016

\(\frac{1.2+3.6+5.10+7.14}{2.3+6.9+10.15+14.21}\)

\(=\frac{1.2+3.6+5.10+7.14}{1.2.3+3.6.3+5.10.3+7.14.3}\)

\(=\frac{1.2+3.6+5.10+7.14}{3.\left(1.2+3.6+5.10+7.14\right)}\)

\(=\frac{1}{3}\)

6 tháng 7 2016

\(\frac{2}{5.10}+\frac{2}{10.15}+\frac{2}{15.20}+...+\frac{2}{2015.2020}\)

\(=2.\left(\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2015.2020}\right)\)

\(=2.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2015}-\frac{1}{2020}\right)\)

\(=2.\left(\frac{1}{5}-\frac{1}{2020}\right)\)

\(=2.\frac{403}{2020}=\frac{403}{1010}\)

6 tháng 7 2016

\(\frac{2}{5.10}+\frac{2}{10.15}+\frac{2}{15.20}+...+\frac{2}{2015.2020}\)

=\(\frac{2}{5}\left(\frac{5}{5.10}+\frac{5}{10.15}+\frac{5}{15.20}+...+\frac{5}{2015.2020}\right)\)

=\(\frac{2}{5}\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

=\(\frac{2}{5}.\left(\frac{1}{5}-\frac{1}{2020}\right)\)

=\(\frac{2}{5}.\frac{403}{2020}\)

=\(\frac{403}{5005}\)

15 tháng 7 2019

E = 2/5.10 + 2/10.15 + ... + 2/35.40

E = 2/5.(1/5 - 1/10 + 1/10 - 1/15 + ... + 1/35 - 1/40)

E = 2/5.(1/5 - 1/40)

E = 2/5.7/40

E = 7/100

15 tháng 7 2019

E = \(\frac{2}{5.10}+\frac{2}{10.15}+...+\frac{2}{35.40}\)

   = \(\frac{2}{5}.\left(\frac{5}{5.10}+\frac{5}{10.15}+...+\frac{5}{35.40}\right)\)

   = \(\frac{2}{5}.\left(\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+...+\frac{1}{35}-\frac{1}{40}\right)\)

   = \(\frac{2}{5}.\left(\frac{1}{5}-\frac{1}{40}\right)\)

   = \(\frac{2}{5}.\frac{7}{40}\)

   = \(\frac{7}{100}\)