Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 3 + 32 + 33 + ... + 32012
3A = 3 + 32 + 33 + 34 + ... + 32013
3A - A = (3 + 32 + 33 + 34 + ... + 32013) - (1 + 3 + 32 + 33 + ... + 32012)
2A = 32013 - 1
=> 2A + 1 = 32013 - 1 + 1
=> 2A = 32013
1.
a) \(3^4\times3^5\times3^6=3^{4+5+6}=3^{15}\)
b) \(5^2\times5^4\times5^5\times25=5^2\times5^4\times5^5\times5^2=5^{2+4+5+2}=5^{13}\)
c) \(10^8\div10^3=10^{8-3}=10^5\)
d) \(a^7\div a^2=a^{7-2}=a^5\)
2.
\(987=900+80+7\\ =9\times100+8\times10+7\\ =9\times10^2+8\times10^1+7\times10^0\)
\(2021=2000+20+1\\ =2\times1000+2\times10+1\times1\\ =2\times10^3+2\times10^1+1\times10^0\)
\(abcde=a\times10000+b\times1000+c\times100+d\times10+e\times1\\ =a\times10^4+b\times10^3+c\times10^2+d\times10^1+e\times10^0\)
A=4+22+23+...+220
Đặt B=22+23+...+220
=>2B=23+24+...+221
=>2B-B=221-22=221-4
=>A=4+B=4+221-4=221
=>A là lũy thừa của 2(ĐPCM)
b)A=3+32+33+...+3100
=>3A=32+33+...+3101
=>3A-A=3101-3
=>2A=3101-3
=>2A+3=3101-3+3=3101
Vậy 2A+3 là lũy thừa của 3(ĐPCM)
\(81^3\cdot\frac{1}{9^2}:3^3\)
\(=\left(9^2\right)^3\cdot\frac{1}{9^2}:3^3\)
\(=9^6\cdot\frac{1}{9^2}:3^3\)
\(=9^4:3^3\)
\(=3^8:3^3=3^5\)
\(a,81^3\cdot\frac{1}{9^2}:3^3=\left(9^2\right)^3\cdot\frac{1}{9^2}:3^3=9^6\cdot\frac{1}{9^2}\cdot\frac{1}{3^3}=\frac{9^6}{9^2}\cdot\frac{1}{3^3}=9^4\cdot\frac{1}{3^3}=\left(3^2\right)^4\cdot\frac{1}{3^3}=\frac{3^8}{3^3}=3^5\)
\(b,625^4:25^2=\left(5^4\right)^4:\left(5^2\right)^2=5^{16}:5^4=5^{12}\)
8=2^3 ; 20=20^1 ; 60=60^1 ; 90=90^1
16=2^4 ; 27=3^3 ; 81=3^4 ; 100=10^2
a) \(3^8:3^4=3^{8-4}=3^4\)
b) \(10^8:10^2=10^{8-2}=10^6\)
c) \(a^6:a=a^{6-1}=a^5\)
Áp dụng quy tắc am : an = am - n(a ≠ 0, m ≥ n ).
a) 38 : 34 = 38 – 4 = 34 = 81;
b) 108 : 102 = 108 – 2 = 106 = 1000000
c) a6 : a = a6 – 1 = a5
Ta có:
\(A=3+3^2+3^3+...+3^{10}\)
\(\Rightarrow3A=3^2+3^3+3^4+...+3^{11}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{11}\right)-\left(3+3^2+3^3+...+3^{10}\right)\)
\(\Rightarrow2A=3^{11}-3\)
\(\Rightarrow2A+3=3^{11}-3+3\)
\(\Rightarrow2A+3=3^{11}\)
Vậy \(2A+3=3^{11}\)
Thank you !!!