Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{20}{8.14}+\frac{20}{14.20}+\frac{20}{20.26}+\frac{20}{26.32}\)
\(M=\frac{20}{6}\left(\frac{6}{8.14}+\frac{6}{14.20}+\frac{6}{20.26}+\frac{6}{26.32}\right)\)
\(M=\frac{20}{6}\left(\frac{1}{8}-\frac{1}{14}+\frac{1}{14}-\frac{1}{20}+\frac{1}{20}-\frac{1}{26}+\frac{1}{26}-\frac{1}{32}\right)\)
\(M=\frac{20}{6}\left(\frac{1}{8}-\frac{1}{32}\right)\)
\(M=\frac{20}{6}.\frac{3}{32}\)
\(M=\frac{5}{16}\)
k nha
\(M=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+\frac{5}{208}\)
\(M=\frac{5}{3}\cdot\left(\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+\frac{3}{13\cdot16}\right)\)
\(M=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}...\frac{1}{13}-\frac{1}{16}\right)\)
\(M=\frac{5}{3}\cdot\left(\frac{1}{4}-\frac{1}{16}\right)\)
\(M=\frac{5}{3}\cdot\frac{3}{16}\)
\(M=\frac{5}{16}\)
đặt \(A=\frac{2011+2012}{2012+2013};B=\frac{2011}{2012}+\frac{2012}{2013}\)
ta có:\(A=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
\(\frac{2011}{2012+2013}<\frac{2011}{2012};\frac{2012}{2012+2013}<\frac{2012}{2013}\)
=>A<B
\(\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}\)
rồi bây giờ thấy ngay đáp án r tự làm đi
\(A=3.\left(\frac{3}{1.4}+\frac{3}{4.7}+.......+\frac{3}{97.100}\right)\)
\(=3.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.........+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3.\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}\)
\(=\frac{297}{100}\)
Dễ thôi bạn mẫu cách nhau 3 đơn vị tử xuất hiện 3 chỉ cần rút rọn đi 3 là tử có nhé
Ta có: \(A=\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+....+\frac{3^2}{97.100}\)
\(\frac{1}{3}A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.......+\frac{3}{97.100}\)
\(\frac{1}{3}A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{97}-\frac{1}{100}\)
\(\frac{1}{3}A=1-\frac{1}{100}\)
\(\frac{1}{3}A=\frac{99}{100}\)
\(A=\frac{99}{100}.3=\frac{297}{100}\)
\(3.2=6\)
6 chia hết cho 2!
K mình nha nguyễn đam tâm
Mình nhanh nhất đó!
Ta có : 2n + 1 chia hết xho n - 1
<=> 2n - 2 + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-1;1;-3;3}
Ta có bảng
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
2n+1/n-1=n-1+n-1 +3/n-1=2+ 3/n-1
để 2+ 3/n-1 là một số tự nhiên thì n-1 phải thuộc Ư(3)
mà Ư(3)={1;3)
=> TH1:
n-1=1=>n=2
=>TH2
n-1=3=>n=4
Vậy n=2 hoặc n=4
Số số hạng là:
( 200 - 1 ): 1 + 1 = 200 (số)
Số cặp trong tổng trên có hiệu = -1 là:
( 200 - 2 ) : 2 = 99 (cặp )
Tổng trên bằng:
99 x (-1) + 1 +200 = 102
b,\(\Rightarrow\)\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\right):2=\frac{2013}{2015}:2\)
\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2013}{4030}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2015}\)
\(\Rightarrow\)\(x+1=2015\)
\(\Rightarrow x=2014\)
a, 2/3x -3/2.x-1/2x=5/12
x.(2/3-3/2-1/2)=5/12
x. -4/3=5/12
x=5/12:-4/3
x=-5/16
b,2/6+2/12+2/20+...+2/x.(x+1)=2013/2015
2/2.3+2/3.4+2/4.5+...+2/x.(x+1)=2013/2015
1/2(1-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)=2013/2015
1/2(1-1/x+1)=2013/2015
1-1/x+1=2013/2015 : 1/2
1-1/x+1=4206/2015
suy ra đề sai
Áp dụng công thức \(\frac{1}{a-1}-\frac{1}{a}=\frac{1}{\left(a-1\right)a}>\frac{1}{a.a}=\frac{1}{a^2}\). Ta có:
\(\frac{1}{2^2}< 2-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
. . . . .
\(\frac{1}{50^2}< \frac{1}{49}-\frac{1}{50}\)
_________________________________________________
\(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2-\frac{1}{50}=\frac{99}{50}\)
Vậy:A = \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< 2^{\left(đpcm\right)}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)=2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
k nha
Nhân 2A lên rồi lấy 2A-A là ra kết quả