Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=6x^2-6x+1\)
\(=6\left(x^2-x+\frac{1}{4}\right)-\frac{1}{2}\)
\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\ge-\frac{1}{2}\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(Min_A=-\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)
\(b,B=3+2x+3x^2\)
\(=3\left(x^2+\frac{2}{3}x+\frac{1}{9}\right)+\frac{8}{3}\)
\(=3\left(x+\frac{1}{3}\right)^2+\frac{8}{3}\ge\frac{8}{3}\)
Dấu = xảy ra \(\Leftrightarrow x=-\frac{1}{3}\)
Vậy \(Min_B=\frac{8}{3}\Leftrightarrow x=-\frac{1}{3}\)
\(c,C=4x+2x^2-3\)
\(=2\left(x^2+2x+1\right)-5\)
\(=2\left(x+1\right)^2-5\ge-5\)
Dấu = xảy ra \(\Leftrightarrow x=-1\)
Vậy \(Min_C=-5\Leftrightarrow x=-1\)
\(d,D=10x+6+x^2\)
\(=\left(x^2+10x+25\right)-19\)
\(=\left(x+5\right)^2-19\ge-19\)
Dấu = xảy ra \(\Leftrightarrow x=-5\)
Vậy \(Min_D=-19\Leftrightarrow x=-5\)
\(e,E=8x^2-6x+3\)
\(=8\left(x^2-\frac{3}{4}x+\frac{9}{64}\right)+\frac{15}{8}\)
\(=8\left(x-\frac{3}{8}\right)^2+\frac{15}{8}\ge\frac{15}{8}\)
Dấu = xảy ra \(\Leftrightarrow x=\frac{3}{8}\)
Vậy \(Min_E=\frac{15}{8}\Leftrightarrow x=\frac{3}{8}\)
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
a) Ta có:A = 6x2 - 6x + 1 = 6(x2 - x + 1/4) - 1/2 = 6(x - 1/2)2 - 1/2
Ta luôn có : (x - 1/2)2 \(\ge\)0 \(\forall\)x --> 6(x - 1/2)2 \(\ge\) 0 \(\)x
=> 6(x - 1/2)2 - 1/2 \(\ge\)-1/2 \(\forall\)x
hay A \(\ge\)-1/2 \(\forall\)x
Dấu "=" xảy ra khi : (x - 1/2)2 = 0 <=> x - 1/2 = 0 <=> x = 1/2
Vậy Amin = -1/2 tại x = 1/2
\(a,A=6x^2-6x+1\)
\(=6\left(x^2-x+\frac{1}{6}\right)\)
\(=6\left[\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\frac{1}{4}+\frac{1}{6}\right]\)
\(=6\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{12}\right]\)
\(=6\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\)
\(A_{min}=-\frac{1}{12}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Rightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)
\(\Rightarrow A=\left(x^3+8\right)-\left(x^3-2\right)\)
\(\Rightarrow A=x^3+8-x^3+2\)
\(\Rightarrow A=\left(x^3-x^3\right)+\left(8+2\right)\)
\(\Rightarrow A=10\)
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)
\(=x^3+8-x^3+2\)
\(=10\)
\(B=\left(x+2\right)\left(x-2\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x^3+8\right)\left(x^3-8\right)\)
\(=x^6-64\)
\(C=\left(x^2+3x+1\right)^2+\left(3x-1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)\)
\(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
\(D=\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1+3x\right)\left(3x^3+1-3x\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1\right)^2-9x^2-\left(3x^3+1\right)^2\)
\(=-9x^2\)
\(E=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1+2x\right)\left(2x^2+1-2x\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2\)
\(=-4x^2\)
a: \(=\dfrac{x^3-x^2-7x+3}{x-3}=\dfrac{x^3-3x^2+2x^2-6x-x+3}{x-3}=x^2+2x-1\)
b: \(=\dfrac{2x^4-4x^2-3x^3+6x+x^2-2}{x^2-2}=2x^2-3x+1\)