K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

tl mình nha

24 tháng 11 2021

a) \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x\left(x-3\right)-\left(x-3\right)+11\)

\(=x^2-3x-x+3+11\)

\(=x^2-4x+14\)

\(=\left(x^2-4x+4\right)+10\)

\(=\left(x-4\right)^2+10\)

Vì \(\left(x-4\right)^2\) ≥ 0

⇒ A ≥ 10

Min A=10 ⇔ x=4

b) tương tự

\(\dfrac{A}{B}=\dfrac{3x^4+3x^2+x^3+x-3x^2-3+5x-2}{x^2+1}=3x^2+x-3+\dfrac{5x-2}{x^2+1}\)

Để A chia hết cho B thì \(\left(5x-2\right)\left(5x+2\right)⋮x^2+1\)

\(\Leftrightarrow25x^2-4⋮x^2+1\)

\(\Leftrightarrow25x^2+25-29⋮x^2+1\)

\(\Leftrightarrow x^2+1\in\left\{1;29\right\}\)

hay \(x\in\left\{0;2\sqrt{7};-2\sqrt{7}\right\}\)

Bài 1: Rút gọn biểu thức a. (5+3x)(x-2)-3(x+3)\(^2\) b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4) Bài 2: Phân tích đa thức thành nhân tử a. (x+y)\(^2\)+(x\(^2\)-y\(^2\)) b. -4x\(^2\)+25+4xy-y\(^2\) c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\) d. x\(^2\)-x-12 e. 2x\(^2\)+x-6 f. 3x\(^2\)+2x-5 g. x\(^3\)+2x\(^2\)-3 Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N a) A= x\(^2\)+4x+9 b) B= 2x\(^2\)-20x+53 c) M= 1+6x-x\(^2\) d) N=...
Đọc tiếp

Bài 1: Rút gọn biểu thức

a. (5+3x)(x-2)-3(x+3)\(^2\)

b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4)

Bài 2: Phân tích đa thức thành nhân tử

a. (x+y)\(^2\)+(x\(^2\)-y\(^2\))

b. -4x\(^2\)+25+4xy-y\(^2\)

c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\)

d. x\(^2\)-x-12

e. 2x\(^2\)+x-6

f. 3x\(^2\)+2x-5

g. x\(^3\)+2x\(^2\)-3

Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N

a) A= x\(^2\)+4x+9

b) B= 2x\(^2\)-20x+53

c) M= 1+6x-x\(^2\)

d) N= -x\(^2\)-y\(^2\)+xy+2x+2y

Bài 4: Tìm số

a) Tìm a để x\(^4\)-x\(^3\)+6x\(^2\)-x+a chia hết cho x\(^2\)-x+5

b) Tìm giái trị nguyên của n để 3n\(^3\)+10n\(^2\)-5 chia hết cho 3n+1

Bài 8: Tính giá trị của biểu thức

a) A= x\(^3\)-y\(^3\)-3xy với x-y=1

b) B= x\(^4\)+y\(^4\) với x,y là các số dương thỏa xy= 5, x\(^2\)+y\(^2\)=18

c) C= x\(^3\)-3xy(x-y)-y\(^3\)-x\(^2\)+2xy-y\(^2\) với x-y=7

d) D=x\(^{2013}\)-12x\(^{2012}\)+12x\(^{2011}\)-...+12x\(^3\)-12x\(^2\)+12x-2013 với x

Ai biết bài nào thì giải hộ em với ạ TvT

2
21 tháng 10 2019

Bài 3:

a) ta có: \(A=x^2+4x+9\)

\(=x^2+4x+4+5=\left(x+2\right)^2+5\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2

b) Ta có: \(B=2x^2-20x+53\)

\(=2\left(x^2-10x+\frac{53}{2}\right)\)

\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)

\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)

\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)

\(=2\left(x-5\right)^2+3\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)

Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5

c) Ta có : \(M=1+6x-x^2\)

\(=-x^2+6x+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

\(=-\left(x-3\right)^2+10\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3

21 tháng 10 2019

Bài 2:

a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)

\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)

\(=\left(x+y\right).\left(x+y+x-y\right)\)

\(=\left(x+y\right).2x\)

c) \(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)

\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)

Chúc bạn học tốt!

23 tháng 10 2017

=a, a(b2+c2)+b(a2+c2)+c(a2+b2)+2abc

= ab2+ac2+ba2+bc2+ca2+cb2+2abc

= c2(a+b)+ab(a+b)+c(a2+b2+2ab)

= c2(a+b)+ab(a+b)+c(a+b)2

= (a+b)\(\left[c^2+ab+c\left(a+b\right)\right]\)

= (a+b)(c2+ab+ca+cb)

= (a+b)\(\left[c\left(a+c\right)+b\left(a+c\right)\right]\)

=(a+b)(a+c)(b+c)

b, a(b-c)3+b(c-a)3+c(a-b)3

= a(b-c)3-b\(\left[\left(b-c\right)+\left(a-b\right)\right]\)3+c(a-b)3

= a(b-c)3-b(b-c)3-3b(b-c)2(a-b)-3b(b-c)(a-b)2-b(a-b)3+c(a-b)3

= a(b-c)3-b(b-c)3-3b(b-c)(a-b)(b-c+a-b)-b(a-b)3+c(a-b)3

= a(b-c)3-b(b-c)3-3b(b-c)(a-b)(a-c)-b(a-b)3+c(a-b)3

= (b-c)3(a-b)-3b(b-c)(a-b)(a-c)-(a-b)3(b-c)

= (b-c)(a-b)\(\left[\left(b-c\right)^2-3b\left(a-c\right)-\left(a-b\right)^2\right]\)

=(b-c)(a-b)(b2-2bc+c2-3ab+3bc-a2+2ab-b2)

= (b-c)(a-b)(c2-a2+bc-ab)

= (b-c)(a-b)\(\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)

= (b-c)(a-b)(c-a)(c+a+b)

c, a2b2(a-b)+b2c2(b-c)+c2a2(c-a)

= a2b2(a-b)-b2c2\(\left[\left(a-b\right)+\left(c-a\right)\right]\)+c2a2(c-a)

= a2b2(a-b)-b2c2(a-b)-b2c2(c-a)+c2a2(c-a)

= b2(a-b)(a2-c2)+c2(c-a)(a2-b2)

= b2(a-b)(a-c)(a+c)-c2(a-c)(a-b)(a+b)

= (a-c)(a-b)\(\left[b^2\left(a+c\right)-c^2\left(a+b\right)\right]\)

= (a-c)(a-b)(b2a+b2c-c2a-c2b)

= (a-c)(a-b)\(\left[a\left(b^2-c^2\right)+bc\left(b-c\right)\right]\)

= (a-c)(a-b)\(\left[a\left(b-c\right)\left(b+c\right)+bc\left(b-c\right)\right]\)

= (a-c)(a-b)(b-c)\(\left[a\left(b+c\right)+bc\right]\)

= (a-c)(a-b)(b-c)(ab+ac+bc)

d, a4(b-c)+b4(c-a)+c4(a-b)

= a4(b-c)-b4[(b-c)+(a-b)]+c4(a-b)
= (b-c)(a4-b4)+(a-b)(c4-b4)
= (b-c)(a2-b2)(a2+b2)+(a-b)(c2-b2)(c2+b2)
= (b-c)(a-b)(a+b)(a^2+b^2)-(a-b)(b-c)(b+c)(b2+c2)
= (b-c)(a-b)(a3+ab2+ba2+b3-bc2-b3-cb2-c3)

= (b-c)(a-b)(a3+ab2+ba2-bc2-c3-cb2)
= (b-c)(a-b)(a3-c3)+b2(a-c)+b(a2-c2)
= (b-c)(a-b)(a-c)(a2+ac+c2)+b2(a-c)+b(a-c)(a+c)
= (b-c)(a-b)(a-c)(a2+ac+c2+b2+ab+ac)

= (a-b)(b-c)(c-a)(a2+b2+c2+ab+bc+ca)

4 tháng 10 2018

bạn làm giỏi thế có phương pháo nào ko mách mk

7 tháng 9 2018

B1:a)(3x-5)2-(3x+1)2=8

[(3x-5)+(3x+1)].[(3x-5)-(3x+1)]=8

(3x-5+3x+1)(3x-5-3x-1)=8

9x2-15x-9x2-3x-15x+25+15x+5+9x2-15x-9x2-3x+3x-5-3x-1=8

-36x+24=8

-36x=8-24=16

x=16:(-36)=\(\dfrac{-4}{9}\)

Bài 5: 

a: \(=\left(xy-u^2v^3\right)\left(xy+u^2v^3\right)\)

b: \(=\left(2xy^2-3xy^2+1\right)\left(2xy^2+3xy^2-1\right)\)

\(=\left(1-xy^2\right)\left(5xy^2-1\right)\)

Bài 6:

a: \(\left(a+b+c-d\right)\left(a+b-c+d\right)\)

\(=\left(a+b\right)^2+\left(c-d\right)^2\)

\(=a^2+2ab+b^2+c^2-2cd+d^2\)

b: \(\left(a+b-c-d\right)\left(a-b+c-d\right)\)

\(=\left(a-d\right)^2-\left(b-c\right)^2\)

\(=a^2-2ad+d^2-b^2+2bc-c^2\)

23 tháng 9 2017

bài 1

a(x+y)2-(x-y)2

=[(x+y)-(x-y)][(x+y)+(x-y)]

=(x+y-x+y)(x+y+x-y)

=2y.2x

b,(3x+1)2-(x+1)2

=[(3x+1)-(x+1)][(3x+1)+(x+1)]

=(3x+1-x-1)(3x+1+x+1)

=2x.(4x+2)

4x.(x+10

23 tháng 9 2017

bài 2

x3-0,25x=0

=>x(x2-0,25)=0

=>x=0 hoặc x2-0,25=0

=> x=0 hoặc x=\(\pm0,5\)

27 tháng 11 2017

Các bạn làm nhanh hộ mik nha! Thank you mấy bạn nhiều lắm!

22 tháng 8 2018

a) 2x2 + 4x + xy + 2y

= (2x2 + xy) + (4x + 2y)

= x(2x + y) + 2(2x + y)

= (x + 2)(2x + y)

22 tháng 8 2018

b) x2 + xy - 7x - 7y

= x(x + y) - 7(x + y)

= (x - y)(x + y)