Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3.\)
Gọi O là giao điểm của AC và BD
ABCD là hình bình hành nên O là trung điểm của AC và BD
Vẽ \(OO'\perp d;O'\in d\)
Các đường thẳng \(BB';CC';DD';OO'\)song song với nhau vì cùng vuông góc với đường thẳng d
\(B'D'DB\)là hình thang (Vì \(BB'//DD'\)) có: \(OB=OD;OO'//BB'\)nên \(OO'\)là đường trung bình của hình thang \(B'D'DB\): \(OO'=\frac{1}{2}\left(BB'+DD'\right)\)(*)
Mặt khác \(\Delta ACC'\): \(OO'//CC';OA=OC\)
Nên OO' là đường trung bình của \(\Delta ACC'\): \(OO'=\frac{1}{2}CC'\)(**)
Từ (*) và (**) \(\Rightarrow BB'+DD'=CC'\)