K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1.Đường thẳng đi qua hai trung điểm của hai cạnh đối diện của một tứ giác lồi tạo bởi hai đường chéo hai góc bằng nhau.Chứng minh tứ giác ấy có hai đường chéo bằng nhau. 2.Cho tam giác ABC(AB ≠ AC). Trên tia đối của các tia BA,CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh rằng MN song song với tia phân giác của góc A3. Cho hình bình...
Đọc tiếp

1.Đường thẳng đi qua hai trung điểm của hai cạnh đối diện của một tứ giác lồi tạo bởi hai đường chéo hai góc bằng nhau.Chứng minh tứ giác ấy có hai đường chéo bằng nhau.

 

2.Cho tam giác ABC(AB ≠ AC). Trên tia đối của các tia BA,CA lần lượt lấy các điểm D và E sao cho BD=CE. Gọi M,N lần lượt là trung điểm của DE và BC. Chứng minh rằng MN song song với tia phân giác của góc A

3. Cho hình bình hành ABCD. Gọi d là đường thẳng qua A và không cắt đoạn thẳng BD. Gọi BB', CC', DD' lần lượt là khoảng cách từ B, C, D đến đường thẳng d (B', C', D' thuộc d). Chứng minh rằng BB' + DD' = CC'

4. Gọi P là trung điểm thuộc cạnh BC (PB khác PC), N là trung điểm của cạnh CD, Q là điểm thuộc cạnh AD (QA khác QD). Biết MNPQ là hình bình hành .CMR: 

giúp mk vs mk đg cần gấp

2

\(3.\)

Gọi O là giao điểm của AC và BD

ABCD là hình bình hành nên O là trung điểm của AC và BD

Vẽ \(OO'\perp d;O'\in d\)

Các đường thẳng \(BB';CC';DD';OO'\)song song với nhau vì cùng vuông góc với đường thẳng d

\(B'D'DB\)là hình thang (Vì \(BB'//DD'\)) có: \(OB=OD;OO'//BB'\)nên \(OO'\)là đường trung bình của hình thang \(B'D'DB\)\(OO'=\frac{1}{2}\left(BB'+DD'\right)\)(*)

Mặt khác \(\Delta ACC'\)\(OO'//CC';OA=OC\)

Nên OO' là đường trung bình của \(\Delta ACC'\)\(OO'=\frac{1}{2}CC'\)(**)

Từ (*) và (**) \(\Rightarrow BB'+DD'=CC'\)

O B' B A O' C' d D' C D

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là...
Đọc tiếp

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .

Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là đường thẳng AB) sao cho các tia MA, MB tạo với đường thẳng d một tam giác có diện tích nhỏ nhất.

Bài 8: Cho tam giác ABC, trên cạnh BC, CA và AB lần lượt lấy các điểm M, N và P sao cho: a) Chứng minh rằng: AM, BN, CP là độ dài ba cạnh của một tam giác mà ta kí hiệu là \(\Delta\)(k). b) Tìm k để diện tích tam giác \(\Delta\)(k) nhỏ nhất.

0