Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tích của abc, bca, cab là một số có 9 chữ số mà chữ số tận cùng là 9, chữ số đầu tiên là 2. Tìm abc.
Theo đề bài ta có phương trình : \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}=x\left(a,b,c,d,e,f,g,h,i,j,x\inℕ\right)\)
Ta có \(\overline{abc}\cdot\overline{bca}\cdot\overline{cab}=\overline{2defghij9}\) do chữ số tận cùng của tích \(ca\) (đặt là \(y\)) khi nhân với \(b\) thì có chữ số tận cùng là 9 (áp dụng phép đặt tính và nhân lần lượt các thừa số \(\overline{abc},\overline{bca},\overline{cab}\)). Vậy có 2 trường hợp xảy ra.
TH1 : \(yb=9=1\cdot1\cdot9=1\cdot3\cdot3\)
TH1a : \(a=1,b=1,c=9\Rightarrow x=119\cdot191\cdot911=20706119\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH1a vô lí)
TH1b : \(a=1,b=3,c=3\Rightarrow x=133\cdot331\cdot313=1379199\)(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 7 chữ số vậy TH1b vô lí)
TH2 : \(yb=49=1\cdot7\cdot7\Rightarrow\overline{abc}=177\Rightarrow x=177\cdot771\cdot717=97846839\)
(không thỏa mãn yêu cầu đề bài vậy do \(x\) có 8 chữ số vậy TH2 vô lí)
Vậy \(\overline{abc}\in\left\{\varnothing\right\}\)
<=> \(A=19^{5^1}+2^{9^1}\)
<=>\(A=19^5+2^9\)
Ta thấy: 19 ≡ 9(mod 10)
<=>19 ≡ -1(mod 10)
<=>195 ≡ (-1)5(mod 10)
<=>195 ≡ -1(mod 10)
Lại có: 29=512 ≡ 2(mod 10)
<=>29 ≡ 2(mod 10)
=>195+29 ≡ -1+2(mod 10)
<=>A≡1(mod 10)
Vậy chữ số tận cùng của A là 1
Ta có:\(9^{99}=9^{2\cdot49+1}=\left(9^2\right)^{49}\cdot9=81^{49}\cdot9=...1\cdot9=...9\)
Vì số nào có đuôi là 1 thì mũ n cũng có số tận cùng là 1.Ko tin tự kiểm tra
Tìm chữ số tận cùng của :
\(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}\)
Các bạn giúp mK nhé . Thanks
Ta có: \(5\equiv1\left(mod4\right)\)
\(\Rightarrow5^{1^{8...}}\equiv1\left(mod4\right)\)
=> 51...có dạng 4k+1
=> 195...có dạng 194k+1=194k.19=...1.19 tận cùng 9
29...có dạng 24k+1=24k.2=...6.2 tận cùng 2
Do đó A tận cùng 1
Tận cùng là 1
\(9^9\)có chữ số tận cùng là 9
Vậy \(9^{9^9}\)có chữ số tận cùng là 9