\(6x^2+xy-2y^2-7x+7y-5\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

Sorry mình mới lớp 6

5 tháng 7 2018

tích đúng mình giải cho

30 tháng 9 2019

a) \(x^2+7x+7y-y^2\)

\(=\left(x+y\right)\left(x-y\right)+7\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+7\right)\)

b) \(x^2-xy-6y^2\)

\(=-6y^2-3xy+2xy+x^2\)

\(=-3y\left(2y+x\right)+x\left(2y+x\right)\)

\(=\left(x-3y\right)\left(2y+x\right)\)

c) \(x^2-3x^2-6x+8\)

\(=\left(x+2\right)\left(x^2-2x+4\right)-3x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-5x+4\right)\)

\(=\left(x+2\right)\left(x^2-4x-x+4\right)\)

\(=\left(x+2\right)\left[x\left(x-4\right)-\left(x-4\right)\right]\)

\(=\left(x+2\right)\left(x-1\right)\left(x-4\right)\)

30 tháng 9 2019

a)x2+7x+7y-y2=(x-y)(x+y)+7.(x+y)

                       =(x+y)(x-y+7)

b)x2-xy-6y2=x2-xy-4y2-2y2

                   =(x-2y)(x+2y)-y(x-2y)

                   =(x-2y)(x+2y-y)

4 tháng 2 2018

\(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+\frac{49}{4}-\frac{9}{4}\)

\(=\left(x+y\right)^2+7\left(x+y\right)+\frac{49}{4}-\frac{9}{4}\)

\(=\left(x+y+\frac{7}{2}\right)^2-\frac{9}{4}\)

\(=\left(x+y+\frac{7}{2}-\frac{3}{2}\right)\left(x+y+\frac{7}{2}+\frac{3}{2}\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

4 tháng 2 2018

b)Ta có: x2y+xy2+x+y=2010

<=>xy.x+xy.y+x+y=2010

<=>11x+11y+x+y=2010

<=>12(x+y)=2010

<=>x+y=167,5

=>(x+y)2=28056,25

<=>x2+y2+2xy=28056,25

<=>x2+y2=28034,25

10 tháng 2 2019

Trả lời :

Ta có :

\(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

Hok tốt

10 tháng 2 2019

a) \(x^2+2xy+7x+7y+y^2+10\)

\(=\left(x^2+2xy+y^2\right)+\left(7x+7y\right)+10\)

\(=\left(x+y\right)^2+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)

\(=\left(x+y+2\right)\left(x+y+5\right).\)

b) \(x^2y+xy^2+x+y=2010\)

\(\Leftrightarrow xy\left(x+y\right)+\left(x+y\right)=2010\)

\(\Leftrightarrow11\left(x+y\right)+1\left(x+y\right)=2010\)

\(\Leftrightarrow12\left(x+y\right)=2010\)

\(\Leftrightarrow x+y=\frac{335}{2}\)

\(\Leftrightarrow\left(x+y\right)^2=\frac{112225}{4}\)

\(\Leftrightarrow x^2+2xy+y^2=\frac{112225}{4}\)

\(\Leftrightarrow x^2+y^2+22=\frac{112225}{4}\)

\(\Leftrightarrow x^2+y^2=\frac{112137}{4}.\)

Vậy \(x^2+y^2=\frac{112137}{4}.\)

30 tháng 7 2015

lẻ quá

&%(*^(#^&*()

16 tháng 6 2017

1/ \(2x^2+5xy+y^2=2\left(x^2+2x.\frac{5y}{4}+\frac{25y^2}{16}-\frac{17y^2}{16}\right)\)

\(=2\left[\left(x+\frac{5y}{4}\right)^2-\left(\frac{\sqrt{17}y}{4}\right)^2\right]=2\left(x+\frac{5-\sqrt{17}}{4}y\right)\left(x+\frac{5+\sqrt{17}}{4}y\right)\)

2/ \(x^2-3xy-2y^2=x^2-2x.\frac{3y}{2}+\frac{9y^2}{4}-\frac{17y^2}{4}\)

\(=\left(x-\frac{3y}{2}\right)^2-\left(\frac{\sqrt{17}y}{2}\right)^2=\left(x+\frac{-3-\sqrt{17}}{2}y\right)\left(x+\frac{-3+\sqrt{17}}{2}y\right)\)

3/ \(6x^2+xy-7x-2y^2+7y-5\)

\(=6x^2+4xy-10x-3xy-2y^2+5y+3x+2y-5\)

\(=2x\left(3x+2y-5\right)-y\left(3x+2y-5\right)+3x+2y-5\)

\(=\left(3x+2y-5\right)\left(2x-y+1\right)\)

4/ \(6a^2-ab-2b^2+a+4b-2\)

\(=6a^2-4ab+4a+3ab-2b^2+2b-3a+2b-2\)

\(=2a\left(3a-2b+2\right)+b\left(3a-2b+2\right)-\left(3a-2b+2\right)\)

\(=\left(3a-2b+2\right)\left(2a+b-1\right)\)

30 tháng 1 2019

a,\(x^2+2xy+7x+7y+y^2+10=\left(x^2+2xy+y^2\right)+7\left(x+y\right)+10\)

\(=\left(x+y\right)^2+2\left(x+y\right)+5\left(x+y\right)+10\)

\(=\left(x+y\right)\left(x+y+2\right)+5\left(x+y+2\right)\)

\(=\left(x+y+2\right)\left(x+y+5\right)\)

b,\(x^2y+xy^2+x+y=2010\Rightarrow xy\left(x+y\right)+x+y=2010\)

\(\Rightarrow12\left(x+y\right)=2010\Rightarrow x+y=167,5\)

Ta có:\(x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(167,5\right)^2-2.11=28034,25\)