Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
do \(x^2+x+1=x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
\(\Rightarrow\sqrt{x^2+x+1}>0\forall x\)
voi dk \(x\ge-1\) ta co
\(x^2+x+1=x^2+2x+1\Rightarrow x=0\)(tm)
b,\(\sqrt{4x^2-20x+25}+2x=5\)
\(\Leftrightarrow\sqrt{\left(2x-5\right)^2}+2x=5\)
\(\Leftrightarrow\left|2x-5\right|+2x=5\)
th1 \(2x-5\ge0\Leftrightarrow x\ge\frac{5}{2}\) ta co\(2x-5+2x=5\Leftrightarrow4x=10\Rightarrow x=2.5\left(tm\right)\)
th2 \(2x-5< 0\Leftrightarrow x< \frac{5}{2}\) \(5-2x+2x=5\Leftrightarrow5=5\)
\(\Rightarrow\) dung voi moi \(x< \frac{5}{2}\)
kl \(x\le\frac{5}{2}\)
c, \(\left|x-1\right|=4\) \(\Rightarrow\orbr{\begin{cases}x-1=4\left(x\ge1\right)\\x-1=-4\left(x< 1\right)\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\left(tm\right)\\x=-3\left(tm\right)\end{cases}}}\)
d.\(\sqrt{3\left(x^2+2x+1\right)+4}+\sqrt{5\left(x^2+2x+1\right)+16}\)
=\(\sqrt{3\left(x+1\right)^2+4}+\sqrt{5\left(x+1\right)^2+16}\ge\sqrt{4}+\sqrt{16}=6\)
ma \(-x^2-2x+5=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)
dau = xay ra \(\Leftrightarrow x=-1\)
mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)
1.
\(DK:x\in\left[-4;5\right]\)
\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)
\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)
\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)
Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)
\(\Rightarrow\sqrt{x-5}=0\)
\(x=5\left(n\right)\)
Vay nghiem cua PT la \(x=5\)
2.
\(DK:x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)
Ta co:
\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)
Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)
TH2:(loai)
Vay nghiem cua PT la \(x\in\left[4;9\right]\)
Mấy câu này chỉ cần tìm ĐKXĐ, chuyển vế phù hợp (có thể cần tìm thêm ĐK) rồi bình phương lên, giải bình thường nhé...chứ dài vậy...ko trả lời chi tiết được đâu bạn nhé!!(tick)
a.
\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{7}+\sqrt{9}}\)
\(=\frac{\sqrt{3}-\sqrt{1}}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+\frac{\sqrt{9}-\sqrt{7}}{9-7}\)
\(=\frac{\sqrt{9}-\sqrt{7}+\sqrt{7}-\sqrt{5}+\sqrt{5}-\sqrt{3}+\sqrt{3}-\sqrt{1}}{2}\)
\(=\frac{3-1}{2}=1\)
b.
\(B=2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}\)
\(=2\sqrt{80\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
\(=8\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}}-6\sqrt{5\sqrt{3}}=0\)
c.
\(C=\frac{15}{\sqrt{6}+1}+\frac{4}{\sqrt{6}-2}-\frac{12}{3-\sqrt{6}}-\sqrt{6}\)
\(=\frac{15\sqrt{6}-15}{6-1}+\frac{4\sqrt{6}+8}{6-4}-\frac{36+12\sqrt{6}}{9-6}-\sqrt{6}\)
\(=\frac{15\sqrt{6}-15}{5}+\frac{4\sqrt{6}+8}{2}-\frac{36+12\sqrt{6}}{3}-\sqrt{6}\)
\(=3\sqrt{6}-3+2\sqrt{6}+4-12-4\sqrt{6}-\sqrt{6}\)
\(=-11\)
d)D=\(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)( \(x\ge2\))
=\(\sqrt{x+2\sqrt{2}.\sqrt{x-2}}+\sqrt{x-2\sqrt{2}.\sqrt{x-2}}\)
=\(\sqrt{\left(x-2\right)+2\sqrt{2}.\sqrt{x-2}+2}+\sqrt{\left(x-2\right)-2\sqrt{2}.\sqrt{x-2}+2}\)
=\(\sqrt{\left(\sqrt{x-2}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-2}-\sqrt{2}\right)^2}\)
=\(\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)(1)
TH1: \(2\le x\le4\)
Từ (1)<=> \(\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}+\sqrt{2}\)
=\(2\sqrt{2}\)
TH2. x\(>4\)
Từ (1) <=> \(\sqrt{x-2}+\sqrt{2}-\sqrt{2}+\sqrt{x-2}\)=\(2\sqrt{x-2}\)
Vậy \(\left[{}\begin{matrix}2\le x\le4\\x>4\end{matrix}\right.< =>\left[{}\begin{matrix}D=2\sqrt{2}\\D=2\sqrt{x-2}\end{matrix}\right.\)
\(6\sqrt{2x+7}=2\sqrt{x}+x+15\left(1\right)\)
\(Đk:x\ge0\)
\(\left(1\right)\Leftrightarrow x+2\sqrt{x}+15-6\sqrt{2x+7}=0\)
\(\Leftrightarrow\left[\left(2x+7\right)-6\sqrt{2x+7}+9\right]-\left(x-2\sqrt{x}+1\right)=0\)
\(\Leftrightarrow\left(\sqrt{2x+7}-3\right)^2-\left(\sqrt{x}-1\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{2x+7}+\sqrt{x}-4\right)\left(\sqrt{2x+7}-\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+7}+\sqrt{x}=4\left(2\right)\\\sqrt{2x+7}-\sqrt{x}=2\left(3\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\left(2x+7\right)+2\sqrt{x\left(2x+7\right)}+x=16\)
\(\Leftrightarrow2\sqrt{x\left(2x+7\right)}=9-3x\)
\(\Leftrightarrow\left\{{}\begin{matrix}9-3x\ge0\\4x\left(2x+7\right)=81-54x+9x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\x^2-82x+81=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le3\\\left[{}\begin{matrix}x=1\left(n\right)\\x=81\left(l\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=1\left(n\right)\)
\(\left(3\right)\Leftrightarrow\left(2x+7\right)-2\sqrt{x\left(2x+7\right)}+x=4\) (vì \(\sqrt{2x+7}>\sqrt{x}\))
\(\Leftrightarrow2\sqrt{x\left(2x+7\right)}=3x+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+3\ge0\\4x\left(2x+7\right)=9x^2+18x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x^2-10x+9=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\\left[{}\begin{matrix}x=1\left(n\right)\\x=9\left(n\right)\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=9\end{matrix}\right.\left(n\right)\)
Vậy phương trình (1) có 2 nghiệm là \(x=1\text{v}ax=9\)
bạn ơi sao từ đoạn trên lại ra được tích như dưới vậy ạ