Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ từ hồi trả lời cho câu này củng hơi khó cần thời gian suy nghĩ
với a,b,c lớn thì \(\frac{1}{\left(a+2b+c\right)^3}\) nhỏ, \(a^3+8b^3+c^3\) lớn => P ko có max
\(P=\frac{a^3+8b^3+c^3}{\left(a+2b+c\right)^3}=\left(\frac{a}{a+2b+c}\right)^3+\left(\frac{2b}{a+2b+c}\right)^3+\left(\frac{c}{a+2b+c}\right)^3\)
Đặt \(\left(x;y;z\right)\rightarrow\left(\frac{a}{a+2b+c};\frac{2b}{a+2b+c};\frac{c}{a+2b+c}\right)\)\(\Rightarrow\)\(x+y+z=1\)
\(P=x^3+y^3+z^3=\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\frac{\left(x+y+z\right)^4}{9}}{x+y+z}=\frac{1}{9}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{3}\) hay \(a=2b=c\)
Nhận xét : P > 0
P đạt giá trị nhỏ nhất <=> \(P^2\) đạt giá trị nhỏ nhất.
Ta có : \(P^2=\frac{\left(a^2+b^2+1\right)^2}{\left(a-b\right)^2}=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)+1}{\left(a^2+b^2\right)-2ab}\)
\(=\frac{\left(a^2+b^2\right)^2+2\left(a^2+b^2\right)+1}{a^2+b^2-8}\)
Đặt \(t=a^2+b^2,P^2=y\) \(\Rightarrow y=\frac{t^2+2t+1}{t-8}\)
\(\Rightarrow y\left(t-8\right)=t^2+2t+1\Leftrightarrow t^2+t\left(2-y\right)+\left(1+8y\right)=0\)
Để pt có nghiệm thì \(\Delta=\left(2-y\right)^2-4\left(1+8y\right)=y^2-36y\ge0\)
\(\Leftrightarrow y\left(y-36\right)\ge0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}y\ge36\left(\text{nhận}\right)\\y\le0\left(\text{loại}\right)\end{array}\right.\)
Suy ra \(y=P^2\ge36\Rightarrow P\ge6\).
Dấu "=" xảy ra khi \(\frac{\left(t+1\right)^2}{t-8}=36\Leftrightarrow t=17\)
\(\Rightarrow\begin{cases}ab=4\\a^2+b^2=17\end{cases}\) \(\Leftrightarrow\begin{cases}a=4\\b=1\end{cases}\) (vì a > b)
Vậy P đạt giá trị nhỏ nhất bằng 6 khi (a;b) = (4;1)
=>6a^2-3ab-4ab+2b^2=0
=>3a(2a-b)-2b(2a-b)=0
=>(2a-b)(3a-2b)=0
=>3a=2b hoặc 2a=b
=>a=2/3b hoặc a=1/2b
Để mình chứng minh là đề bạn sai nhé
Điều kiện xác định
\(\hept{\begin{cases}2x-1\ge0\\2x-3x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge0,5\\x\le0\end{cases}}\)vô lý
Từ điều kiện xác định đã thấy đề sai rồi
\(x^2-2\left(m-3\right)x+m^2-5m+6=0\)(1)
Để phương trình có hai nghiệm \(x_1,x_2\)thì:
\(\Delta'\ge0\Leftrightarrow\left(m-3\right)^2-\left(m^2-5m+6\right)=m^2-6m+9-\left(m^2-5m+6\right)=-m+3\ge0\)
\(\Leftrightarrow m\le3\)
Với \(m\le3\)phương trình (1) có hai nghiệm \(x_1,x_2\)nên theo định lí Viete ta có:
\(\hept{\begin{cases}x_1+x_2=2m-6\\x_1x_2=m^2-5m+6\end{cases}}\)
\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-3\right)^2-2\left(m^2-5m+6\right)\)
\(=2m^2-14m+24=40\)
\(\Leftrightarrow m^2-7m-8=0\)
\(\Leftrightarrow\left(m-8\right)\left(m+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=8\left(l\right)\\m=-1\left(tm\right)\end{cases}}\)
a: Xét (O) có
ΔABC nội tiếpAB là đường kính
Do đó: ΔABC vuông tại C
b: Ta có: ΔACD vuông tại C
mà CI là đường trung tuyến
nên CI=AI=DI
Xét ΔIAO và ΔICO có
IA=IC
AO=CO
IO chung
Do đó: ΔIAO=ΔICO
Suy ra: \(\widehat{IAO}=\widehat{ICO}=90^0\)
hay IC là tiếp tuyến của (O)