Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{4}=\frac{2x+1}{5}\)
\(\Rightarrow5\left(x-1\right)=4\left(2x+1\right)\)
\(\Rightarrow5x-5=8x+4\)
\(\Rightarrow5x-8x=4+5\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=-3\)
vậy_
\(\frac{x+2}{x-1}=\frac{x-3}{x+1}\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=\left(x-1\right)\left(x-3\right)\)
\(\Rightarrow x^2+x+2x+2=x^2-3x-x+3\)
\(\Rightarrow x^2+x+2x-x^2+3x+x=3-2\)
\(\Rightarrow7x=1\)
\(\Rightarrow x=\frac{1}{7}\)
vậy_
\(\frac{2x+2}{5x-3}=\frac{2x+12}{5x+18}\)
\(\Rightarrow\left(2x+2\right)\left(5x+18\right)=\left(2x+12\right)\left(5x-3\right)\)
\(\Rightarrow\left(2x+2\right)5x+\left(2x+2\right)18=\left(2x+12\right)5x-\left(2x+12\right)3\)
\(\Rightarrow10x^2+10x+36x+36=10x^2+60x-6x-36\)
\(\Rightarrow46x+36=54x-36\)
\(\Rightarrow54x-46x=36+36\)
\(\Rightarrow8x=72\)
\(\Rightarrow x=9\)
Vậy \(x=9\)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm
1. Ta có \(-\sqrt{x}=-2\Rightarrow\sqrt{x}=2\Rightarrow x=4\)
\(\Rightarrow5x^2+7x=5.4^2+7.4=108\)
\(-\sqrt{x}=-2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)..\)
Thế vào biểu thức đã cho \(5x^2+7x\)ta được \(5.4^2+7.4=108\)
Vậy.....
2) Giả sử \(\sqrt{5}\)là số hữu tỉ \(\Rightarrow\sqrt{5}=\frac{a}{b}\left(a,b\in Z;\left(a,b\right)=1\right)\)
\(\Rightarrow\frac{a^2}{b^2}=5\Leftrightarrow a^2=5b^2\Rightarrow a^2⋮5\Rightarrow a⋮5\Rightarrow a^2⋮25\)
Mặt khác \(a^2=5b^2\Rightarrow5b^2⋮25\Leftrightarrow b^2⋮5\Rightarrow b⋮5\)
Như vậy a và b cùng chia hết cho 25 . Mà theo giả thiết \(\left(a,b\right)=1\)nên vô lí
Suy ra \(\sqrt{5}\)không phải là số hữu tỉ nên là số vô tỉ
Ta có x+y=4 => x= 4-y
Thay x=4-y vào biểu thức đã cho, có: [(4-y)-2]y +2017 = (2-y)y+2017 = 2y-y^2+2017 = -(y^2-2y+1)+2018 =
-(y-1)^2 + 2018( nếu bn ko hiểu chỗ này bn có thể hỏi lại)
Để -(y-1)^2 + 2018 lớn nhất thì -(y-1)^2 phải lớn nhất => -(y-1)^2 = 0 => -(y-1)^2 + 2018 = 2018
Vậy GTLN của biểu thức......... là 2018 khi y = 1 và x= 3
Thay x^2=4 vào biểu thức
Sau đó xét 2 trường hợp x=2 và x=-2
\(\left|x\right|=2\Rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Khi x = 2 thì \(5x^2-2x+3x-1=5.2^2-2.2+3.2-1=20-4+6-1=21\)
Khi x = -2 thì \(5x^2-2x+3x-1=5.\left(-2\right)^2-2.\left(-2\right)+3.\left(-2\right)-1\)
\(=20+4-6-1=17\)