Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x + y + z = 36 . (2018 - 2019) = 36 . (-1) = -36
Lại có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)\(\Rightarrow\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)
\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)
Do đó: \(\frac{3x-2y}{4}=0\)\(\Rightarrow3x-2y=0\)\(\Rightarrow3x=2y\)\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)(1)
\(\frac{2z-4x}{3}=0\)\(\Rightarrow2z-4x=0\)\(\Rightarrow2z=4x\)\(\Rightarrow\frac{x}{2}=\frac{z}{4}\)(2)
Từ (1), (2) \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{-36}{9}=-4\)
Do đó: \(\hept{\begin{cases}\frac{x}{2}=-4\\\frac{y}{3}=-4\\\frac{z}{4}=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=-8\\y=-12\\z=-14\end{cases}}\)
Vậy...
tôi đã thử lòng các bạn nhưng ko có ai trả lời thì tớ giải cho nhé.
bài làm: Đặt \(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=k\Rightarrow\)x =1998k ; y =1999k ; z =2000k
ta có : \(\left(x-z\right)^3=\left(1999k-2000k\right)^3\) = \(\left[k\cdot\left(1999-2000\right)\right]^3\)= \(k^3\cdot\left(-8\right)\) (1)
\(8\cdot\left(x-y\right)^2\cdot\left(y-z\right)\) = \(8\cdot\left(1998k-1999k\right)^2\cdot\left(1999k-2000k\right)\)
= \(8\cdot\left[k\cdot\left(1999-2000\right)\right]^2\cdot\left[k\cdot\left(1999-2000\right)\right]\)
= \(8\cdot k^2\cdot1\cdot k\cdot\left(-1\right)=k^3\cdot\left(-8\right)\) (2)
từ (1)và (2) \(\Rightarrow\left(x-z\right)^3=8\cdot\left(x-y\right)^2\cdot\left(y-z\right)\)
\(a,16^x:4^x=16\)
\(\left(4^x\right)^2:4^x=4^2\)
\(\Rightarrow4^x=4^2\Leftrightarrow x=2\)
\(b,2^{-1}.2^x+4.2^x=72\)
\(\Rightarrow2^{x-1}+2^{x+2}=72\)
\(\Rightarrow2^{x-1}\left(1+2^3\right)=72\)
\(\Rightarrow2^{x-1}=72:9=8=2^3\)
\(\Rightarrow x=4\)
\(c,\left(2^x+1\right)^3=-64\)
\(\Rightarrow2^x+1=-4\)
\(\Rightarrow2^x=-5\)
Đặt \(A=2.2^2+3.2^3+4.2^4+5.2^5+...+n.2^n\)
\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)
\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)
\(-2.2^2-3.2^3-4.2^4-5.2^5-...-n.2^n\)
\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)
Đặt \(M=\left(2^3+2^4+...+2^n\right)\)
\(\Rightarrow2M=\left(2^4+2^5+...+2^{n+1}\right)\)
\(\Rightarrow M=2^{n+1}-2^3\)
\(\Rightarrow A=n.2^{n+1}-2^3-2^{n+1}+2^3\)
\(\Rightarrow A=\left(n-1\right)2^{n+1}=2^{n+10}\)
\(\Rightarrow\left(n-1\right)=2^9\)
\(\Rightarrow n=513\)
Ta có: \(2\cdot2^2+3\cdot2^2+...+n\cdot2^2=2^{n+10}\)
\(\Leftrightarrow2^2\cdot\left(2+3+...+n\right)=2^{n+10}\)
\(\Leftrightarrow\frac{\left(n+2\right)\left[\left(n-2\right)\div1+1\right]}{2}=2^{n+8}\)
\(\Leftrightarrow\left(n+2\right)\left(n+1\right)=2^{n+9}\)
Mà trong n+1 và n+2 luôn tồn tại 1 số lẻ và 2n+9 là lũy thừa của 2 nên ta xét 2 TH sau:
Nếu \(n+1=1\Rightarrow n=0\) thử lại ta thấy không thỏa mãn
Nếu \(n+2=1\Rightarrow n=-1\left(ktm\right)\) vì n là STN
Vậy không tồn tại số n thỏa mãn
Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)
\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)
\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}-2.2^2-3.2^3-4.2^4-...-n.2^n\)
\(\Leftrightarrow A=-2.2^2+\left(2.2^3-3.2^3\right)+\left(3.2^4-4.2^4\right)+...+[\left(n-1\right)2^n-n.2^n]+n.2^{n+1}\)
\(\Leftrightarrow A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)
\(\Leftrightarrow A=-2^3-\left(2^4-2^3\right)-\left(2^5-2^4\right)-...-\left(2^{n+1}-2^n\right)+n.2^{n+1}\)
\(\Leftrightarrow A=-2^3-2^4+2^3-2^5+2^4-...-2^{n+1}+2^n+n.2^{n+1}\)
\(\Leftrightarrow A=-2^{n+1}+n.2^{n+1}\)
\(\Leftrightarrow A=2^{n+1}\left(n-1\right)\)
Mà \(A=2^{n+10}=2^{n+1}.2^9=2^{n+1}.512\)
\(\Rightarrow n-1=512\)
\(\Rightarrow n=513\)
\(5\cdot2^x+4\cdot2^x=72\)
\(2^x\cdot\left(5+4\right)=72\)
\(2^x=72\div9\)
\(2^x=8=2^3\)
\(\Rightarrow x=3\)
5.\(2^x\)+4.\(2^x\)=72
(=)\(2^x\).(5+4)=72
(=)\(2^x\)=8
(=)\(2^x=2^3\)
=>x=3