K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

\(5\cdot2^x+4\cdot2^x=72\)

\(2^x\cdot\left(5+4\right)=72\)

\(2^x=72\div9\)

\(2^x=8=2^3\)

\(\Rightarrow x=3\)

2 tháng 9 2018

5.\(2^x\)+4.\(2^x\)=72

(=)\(2^x\).(5+4)=72

(=)\(2^x\)=8

(=)\(2^x=2^3\)

=>x=3

4 tháng 11 2019

Ta có: x + y + z = 36 . (2018 - 2019) = 36 . (-1) = -36

Lại có: \(\frac{3x-2y}{4}=\frac{2z-4x}{3}=\frac{4y-3z}{2}\)\(\Rightarrow\frac{4\left(3x-2y\right)}{16}=\frac{3\left(2z-4x\right)}{9}=\frac{2\left(4y-3z\right)}{4}\)

\(\Rightarrow\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{12x-8y}{16}=\frac{6z-12x}{9}=\frac{8y-6z}{4}=\frac{12x-8y+6z-12x+8y-6z}{16+9+4}=\frac{0}{29}=0\)

Do đó: \(\frac{3x-2y}{4}=0\)\(\Rightarrow3x-2y=0\)\(\Rightarrow3x=2y\)\(\Rightarrow\frac{x}{2}=\frac{y}{3}\)(1)

            \(\frac{2z-4x}{3}=0\)\(\Rightarrow2z-4x=0\)\(\Rightarrow2z=4x\)\(\Rightarrow\frac{x}{2}=\frac{z}{4}\)(2)

Từ (1), (2) \(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{-36}{9}=-4\)

Do đó: \(\hept{\begin{cases}\frac{x}{2}=-4\\\frac{y}{3}=-4\\\frac{z}{4}=-4\end{cases}\Rightarrow}\hept{\begin{cases}x=-8\\y=-12\\z=-14\end{cases}}\)

Vậy...

27 tháng 10 2019

tôi đã thử lòng các bạn nhưng ko có ai trả lời thì tớ giải cho nhé.

bài làm:  Đặt \(\frac{x}{1998}=\frac{y}{1999}=\frac{z}{2000}=k\Rightarrow\)x =1998k   ; y =1999k   ; z =2000k

ta có : \(\left(x-z\right)^3=\left(1999k-2000k\right)^3\)  = \(\left[k\cdot\left(1999-2000\right)\right]^3\)= \(k^3\cdot\left(-8\right)\)                                         (1)

\(8\cdot\left(x-y\right)^2\cdot\left(y-z\right)\) = \(8\cdot\left(1998k-1999k\right)^2\cdot\left(1999k-2000k\right)\) 

                                                  = \(8\cdot\left[k\cdot\left(1999-2000\right)\right]^2\cdot\left[k\cdot\left(1999-2000\right)\right]\)

                                                 = \(8\cdot k^2\cdot1\cdot k\cdot\left(-1\right)=k^3\cdot\left(-8\right)\)                                                                        (2)

từ (1)và (2) \(\Rightarrow\left(x-z\right)^3=8\cdot\left(x-y\right)^2\cdot\left(y-z\right)\)  

5 tháng 8 2018

\(a,16^x:4^x=16\)

\(\left(4^x\right)^2:4^x=4^2\)

\(\Rightarrow4^x=4^2\Leftrightarrow x=2\)

\(b,2^{-1}.2^x+4.2^x=72\)

\(\Rightarrow2^{x-1}+2^{x+2}=72\)

\(\Rightarrow2^{x-1}\left(1+2^3\right)=72\)

\(\Rightarrow2^{x-1}=72:9=8=2^3\)

\(\Rightarrow x=4\)

\(c,\left(2^x+1\right)^3=-64\)

\(\Rightarrow2^x+1=-4\)

\(\Rightarrow2^x=-5\)

5 tháng 8 2018

a) 16^x : 4^x = 16 

<=> ( 16 : 4 )^x = 16 

<=> 4^x = 16

<=> 4^x = 4^2 

=> x = 2

Vậy x =2

9 tháng 7 2017

b) 3.[52x+1 - (52)x] = 3.100

3( 52x+1-52x) = 3.100

-> 52x+1-52x = 100

mà 53-52= 100

-> 52x+1-52x = 53-52

Vậy x = 1

c) (42)x : 4x = 42

<=>42x-x =42

<=> 4x = 42

-> x=2

d) 2x( 0,5 +4) = 72

2x. 4,5 = 72

2x = 72:4,5 = 16

2x = 24 = 16

-> x= 4

1 tháng 8 2019

Đặt \(A=2.2^2+3.2^3+4.2^4+5.2^5+...+n.2^n\)

\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)

\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+5.2^6+...+n.2^{n+1}\)

\(-2.2^2-3.2^3-4.2^4-5.2^5-...-n.2^n\)

\(A=n.2^{n+1}-2^3-\left(2^3+2^4+...+2^n\right)\)

Đặt \(M=\left(2^3+2^4+...+2^n\right)\)

\(\Rightarrow2M=\left(2^4+2^5+...+2^{n+1}\right)\)

\(\Rightarrow M=2^{n+1}-2^3\)

\(\Rightarrow A=n.2^{n+1}-2^3-2^{n+1}+2^3\)

\(\Rightarrow A=\left(n-1\right)2^{n+1}=2^{n+10}\)

\(\Rightarrow\left(n-1\right)=2^9\)

\(\Rightarrow n=513\)

7 tháng 10 2020

Ta có: \(2\cdot2^2+3\cdot2^2+...+n\cdot2^2=2^{n+10}\)

\(\Leftrightarrow2^2\cdot\left(2+3+...+n\right)=2^{n+10}\)

\(\Leftrightarrow\frac{\left(n+2\right)\left[\left(n-2\right)\div1+1\right]}{2}=2^{n+8}\)

\(\Leftrightarrow\left(n+2\right)\left(n+1\right)=2^{n+9}\)

Mà trong n+1 và n+2 luôn tồn tại 1 số lẻ và 2n+9 là lũy thừa của 2 nên ta xét 2 TH sau:

Nếu \(n+1=1\Rightarrow n=0\) thử lại ta thấy không thỏa mãn

Nếu \(n+2=1\Rightarrow n=-1\left(ktm\right)\) vì n là STN

Vậy không tồn tại số n thỏa mãn

1 tháng 8 2019

Đặt \(A=2.2^2+3.2^3+4.2^4+...+n.2^n=2^{n+10}\)

\(\Rightarrow2A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}\)

\(\Rightarrow2A-A=2.2^3+3.2^4+4.2^5+...+n.2^{n+1}-2.2^2-3.2^3-4.2^4-...-n.2^n\)

\(\Leftrightarrow A=-2.2^2+\left(2.2^3-3.2^3\right)+\left(3.2^4-4.2^4\right)+...+[\left(n-1\right)2^n-n.2^n]+n.2^{n+1}\)

\(\Leftrightarrow A=-2.2^2-2^3-2^4-...-2^n+n.2^{n+1}\)

\(\Leftrightarrow A=-2^3-\left(2^4-2^3\right)-\left(2^5-2^4\right)-...-\left(2^{n+1}-2^n\right)+n.2^{n+1}\)

\(\Leftrightarrow A=-2^3-2^4+2^3-2^5+2^4-...-2^{n+1}+2^n+n.2^{n+1}\)

\(\Leftrightarrow A=-2^{n+1}+n.2^{n+1}\)

\(\Leftrightarrow A=2^{n+1}\left(n-1\right)\)

Mà \(A=2^{n+10}=2^{n+1}.2^9=2^{n+1}.512\)

\(\Rightarrow n-1=512\)

\(\Rightarrow n=513\)

25 tháng 8 2017

mình không biết