K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2019

Ta có : 4x + y = 1 => y = 1 - 4x

=> 4x^2 + y^2 = 4x^2 + ( 1 - 4x )^2 = 20x^2 - 8x + 1 = 4 ( 5x^2 - 2x ) + 1 = 4/5 ( 25x^2 - 10x + 1 ) + 1/5 = 4/5 ( 5x-1 )^2 +1/5

Ta có : ( 5x-1)^2 >= 0 

=> 4/5 ( 5x-1)^2 +1/5 >= 0 + 1/5 = 1/5

Vậy 4x^2 + y^2 >= 1/5. Dấu "=" xảy ra <=> x= 1/5

28 tháng 4 2019

Áp dụng BĐT Bunhiacopxki ta có:

\(\left[\left(2x\right)^2+y^2\right].\left(2^2+1\right)\ge\left(4x+y\right)^2=1\)

\(\Leftrightarrow4x^2+y^2\ge\frac{1}{5}\)

Dấu " = " xảy ra <=> \(\frac{2x}{2}=y\Leftrightarrow x=y=0,2\)

15 tháng 3 2019

\(4x^2+y^2=4x^2+\left(1-4x\right)^2=4x^2+1-8x+16x^2=20x^2-8x+1=20\left(x^2-\frac{2}{5}x+\frac{1}{20}\right)\)

\(=20\left[x^2-\frac{2}{5}x+\frac{1}{25}+\frac{1}{100}\right]=20\left(x-\frac{1}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{5}\)

15 tháng 3 2019

BĐT$\Leftrightarrow 20x^2+5y^2\geq (4x+y)^2=16x^2+8xy+y^2\Leftrightarrow 2(x-y)^2\geq 0$ (đúng)
Dấu "=" xảy ra khi $x=y=\frac{1}{5}$

25 tháng 4 2019

         Áp dụng BĐT Bunhia-copxki:

Ta có: (4x+y)2=(2x.2+y.1)2\(\le\)(4x2+y2)(22+12)

    <=> 1\(\le\)(4x2+y2).5

       => 4x2+y2 \(\ge\frac{1}{5}\)(đpcm)

25 tháng 4 2019

\(\text{Ta có : }\)

\(4x+1=1< 4x^2+y^2\)

\(\text{Mà }1>\frac{1}{5}=0,2\)

\(\Rightarrow\text{ }4x^2+y^2>\frac{1}{5}\)

14 tháng 6 2017

\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)

\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)

\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)

a: Để A là số nguyên thì \(12x+4⋮4x-3\)

\(\Leftrightarrow4x-3\in\left\{1;-1;13;-13\right\}\)

hay \(x\in\left\{1;\dfrac{1}{2};4;-\dfrac{5}{2}\right\}\)

b: Để B là số nguyên thì \(y-1⋮y^2-17\)

\(\Leftrightarrow y^2-1⋮y^2-17\)

\(\Leftrightarrow y^2-17\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)

hay \(y\in\left\{4;-4;5;-5;3;-3\right\}\)

19 tháng 4 2017

Bài 1:

\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi \(a=b=1\)

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2=1^2=1\)

\(\Rightarrow x^2+y^2+z^2\ge\dfrac{1}{3}\)

Đẳng thức xảy ra khi \(x=y=z=\dfrac{1}{3}\)

Bài 3:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(4+1\right)\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)

\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2\)

\(\Rightarrow5\left(4x^2+y^2\right)\ge\left(4x+y\right)^2=1^2=1\)

\(\Rightarrow4x^2+y^2\ge\dfrac{1}{5}\)

Đẳng thức xảy ra khi \(x=y=\dfrac{1}{5}\)

5 tháng 5 2017

bài 1 mình thấy sao sao ý !!

đề bài là với mọi a,b,c tùy ý và chứng minh chứ bạn làm là khai thác ý cần chứng minh để chỉ ra điều kiện mà

11 tháng 8 2016

bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài