Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phân tích thành nhân tử hả bạn?
Nếu thế thì giải như sau:
\(3x^{n-2}.\left(x^{n+2}-y^{n+2}\right)+y^{n+2}.\left(3x^{n-2}-y^{n-2}\right)\\ =3x^{n-2}.x^{n+2}-3x^{n-2}.y^{n+2}+y^{n+2}.3x^{n-2}-y^{n+2}.y^{n-2}\\ =3x^{2n}-3x^{n-2}.y^{n+2}+y^{n+2}.3x^{n-2}-y^{2n}\\ =3x^{2n}-\left(3x^{n-2}.y^{n+2}-y^{n+2}.3x^{n-2}\right)-y^{2n}\\ =3x^{2n}-y^{2n}\\ =\left(3x^n-y^n\right).\left(3x^n+y^n\right)\)
Xong rồi! Chúc bạn học tốt nhé!

g) \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
h) \(5x^4-20x^2\)
\(=5x^2\left(x^2-4\right)\)
\(=5x^2\left(x-2\right)\left(x+2\right)\)
i) \(7x^2-7y^2-14x+14y\)
\(=7\left(x-y\right)\left(x+y\right)-14\left(x-y\right)\)
\(=7\left(x-y\right)\left(x+y-2\right)\)
k) \(x^2+8x+24+3x\)
\(=x^2+11x+24\)
\(=x^2+3x+8x+24\)
\(=x\left(x+3\right)+8\left(x+3\right)\)
\(=\left(x+3\right)\left(x+8\right)\)
m) \(x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
n) \(x^6-y^6\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)

phân tích đa thức nhân tử
b, x3 - x + 3x2y + 3xy2 + y3 - y
= (x3 + 3x2y + 3xy2 + y3 ) - (x + y)
= (x + y)3 - (x + y)
= (x + y)\(\left[\left(x+y\right)^2-1\right]\)
= (x + y) (x + y + 1)(x + y - 1)

a: Để A chia hết cho B thì \(\left\{{}\begin{matrix}n+1-5>0\\2-4>0\left(loại\right)\end{matrix}\right.\Leftrightarrow n\in\varnothing\)
b: \(\dfrac{A}{B}=\dfrac{5x^3y^{n+2}-3x^2y^2}{-3x^{n-1}y^n}=-\dfrac{5}{3}x^{4-n}y^2+x^{3-n}y^{2-n}\)
Để A chia hết cho B thì \(\left\{{}\begin{matrix}4-n>=0\\3-n>=0\\2-n>=0\end{matrix}\right.\Leftrightarrow n< =2\)
c: \(\dfrac{A}{B}=\dfrac{3x^6\left(2x+5\right)^{n+3}}{2x^2\left(2x+5\right)^{n-1}}=\dfrac{3}{2}x^4\left(2x+5\right)^{n+3-n+1}=\dfrac{3}{2}x^4\left(2x+5\right)^4\)
=>Với mọi N thì A chia hết cho B