K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2018

Phân tích thành nhân tử hả bạn?

Nếu thế thì giải như sau:

\(3x^{n-2}.\left(x^{n+2}-y^{n+2}\right)+y^{n+2}.\left(3x^{n-2}-y^{n-2}\right)\\ =3x^{n-2}.x^{n+2}-3x^{n-2}.y^{n+2}+y^{n+2}.3x^{n-2}-y^{n+2}.y^{n-2}\\ =3x^{2n}-3x^{n-2}.y^{n+2}+y^{n+2}.3x^{n-2}-y^{2n}\\ =3x^{2n}-\left(3x^{n-2}.y^{n+2}-y^{n+2}.3x^{n-2}\right)-y^{2n}\\ =3x^{2n}-y^{2n}\\ =\left(3x^n-y^n\right).\left(3x^n+y^n\right)\)

Xong rồi! Chúc bạn học tốt nhé!

11 tháng 7 2018

\(3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{2-2}\right)\)

\(=3x^{2n}-3x^{n-2}y^{n+2}+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)

\(=3x^{2n}-3x^{n-2}y^{n+2}+3x^{n-2}y^{n+2}-y^{2n}\)

\(=3x^{2n}-y^{2n}\)

P/s: Mk ko rõ đề nên làm vậy nhé!

11 tháng 7 2018

Đề bài chắc là đơn giản tỉ lệ thức(rút gọn) nên mình làm luôn nha:

\(3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)

\(=3x^{2n}-3xy^{2n}+3xy^2-y^{2n}\)

\(=3x^{2n}-y^{2n}\)

14 tháng 7 2015

3x2n - y2n

13 tháng 5 2016

\(=3x^{n-2}.x^{n+2}-3x^{n-2}.y^{n+2}+y^{n+2}.3x^{n-2}-y^{n+2}.y^{n-2}\)

\(=3x^{2n}-y^{2n}\)

10 tháng 7 2019

g) \(x^2-2xy+y^2-9\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y-3\right)\left(x-y+3\right)\)

h) \(5x^4-20x^2\)

\(=5x^2\left(x^2-4\right)\)

\(=5x^2\left(x-2\right)\left(x+2\right)\)

i) \(7x^2-7y^2-14x+14y\)

\(=7\left(x-y\right)\left(x+y\right)-14\left(x-y\right)\)

\(=7\left(x-y\right)\left(x+y-2\right)\)

k) \(x^2+8x+24+3x\)

\(=x^2+11x+24\)

\(=x^2+3x+8x+24\)

\(=x\left(x+3\right)+8\left(x+3\right)\)

\(=\left(x+3\right)\left(x+8\right)\)

m) \(x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

n) \(x^6-y^6\)

\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)