Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. x2 - 2xy + y2 - ( y + 1 )2 = ( x - y )2 - ( y + 1)2
= \(\left[\left(x-y\right)-\left(y+1\right)\right]\left[\left(x-y\right)+\left(y+1\right)\right]\)
= (x-2y-1) ( x +1 )
5. x6 - y6 = (x3)2 - (y3)2
= ( x3 - y3 ) ( x3 + y3 )
=\(\left[\left(x-y\right)\left(x^2+xy+y^2\right)\right]\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]\)
\(a.\: 2a^2b\left(x+y\right)-4a^3b\left(-x-y\right)\\ =\left(x+y\right)\left(2a^2b+4a^3b\right)\\ =2a^2b\left(x+y\right)\left(1+2a\right)\)
\(b.\:-3a\left(x-y\right)-a^2\left(7-x\right)\\ =a\left(3y-3x-7a+ax\right)\)
a, \(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=x^4-\dfrac{4}{25}y^2\)
b, \(\left(3x-2y\right)\left(3x+2y\right)\left(9x^2+4y^2\right)\)
\(=\left(9x^2-4y^2\right)\left(9x^2+4y^2\right)\)
\(=81x^4-16y^4\)
\(3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{2-2}\right)\)
\(=3x^{2n}-3x^{n-2}y^{n+2}+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)
\(=3x^{2n}-3x^{n-2}y^{n+2}+3x^{n-2}y^{n+2}-y^{2n}\)
\(=3x^{2n}-y^{2n}\)
P/s: Mk ko rõ đề nên làm vậy nhé!
Đề bài chắc là đơn giản tỉ lệ thức(rút gọn) nên mình làm luôn nha:
\(3x^{n-2}\left(x^{n+2}-y^{n+2}\right)+y^{n+2}\left(3x^{n-2}-y^{n-2}\right)\)
\(=3x^{2n}-3xy^{2n}+3xy^2-y^{2n}\)
\(=3x^{2n}-y^{2n}\)
a) Đặt \(x^2+3x+1=y\) khi đó ta có:
\(y\left(y-4\right)-5\)
\(=y^2-4y-5\)
\(=y\left(y-5\right)+\left(y-5\right)\)
\(=\left(y+1\right)\left(y-5\right)\)
Thay \(y=x^2+3x+1\):
\(\left(x^2+3x+1+1\right)\left(x^2+3x+1-5\right)\)
\(=\left(x^2+3x+2\right)\left(x^2+3x-4\right)\)
\(=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x-1\right)+4\left(x-1\right)\right]\)
\(=\left(x+2\right)\left(x+1\right)\left(x-1\right)\left(x+4\right)\)
b) Biến đổi 3 số sau có chứa x2 + 2x rồi đặt ẩn.
c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+7=y'\)
Khi đó ta đc:
\(y'\left(y'+8\right)+15\)
\(=\left(y'\right)^2+8y'+15\)
\(=y'\left(y'+3\right)+5\left(y'+3\right)\)
\(=\left(y'+5\right)\left(y'+3\right)\)
....
d) \(x^2-2xy+y^2-7x+7y+12\)
Biến đổi chứa x - y rồi đặt ẩn.
Đỗ thị như quỳnh: làm tương tự thôi mà, nếu bạn ko hiểu chỗ nào thì nói đi :)
1,(x+2)(x+5)(x+3)(x+4)-24=(x2+7x+10)(x2+7x+12)-24
Đặt x2+7x+10= t ta có t(t+2)-24=t2+2t-24=(t-4)(t+6)
hay (x2+7x+6)(x2+7x+16)
2,x(x+10)(x+4)(x+6)+128=(x2+10x)(x2+10x+24)+128
Đặt x2+10x=t ta có t(t+24)+128=t2+24t+128=(t+8)(t+16)
hay (x2+10x+8)(x2+10x+16)
3,(x+2)(x-7)(x+3)(x-8)-144=(x2-5x-14)(x2-5x-24)-144
Đặt x2-5x-14=t ta có t(t-10)-144=t2-10t-144=(t-18)(t+8)
Hay (x2-5x-32)(x2-5x-6)=(x2-5x-32)(x+1)(x-6)
3x2n - y2n