Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\) và \(x+y+z=552\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{4+3+5}=\frac{552}{12}=46\)
\(\hept{\begin{cases}\frac{x}{4}=46\Rightarrow x=46.4=184\\\frac{y}{3}=46\Rightarrow y=46.3=138\\\frac{z}{5}=46\Rightarrow z=46.5=230\end{cases}}\)
Vậy ..........................................
b)
Ta có:
\(3x=4y=6z\Leftrightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{6}}\) và \(x+y+z=315\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=420\Rightarrow x=\frac{1}{3}.420=140\\\frac{y}{\frac{1}{4}}=420\Rightarrow y=\frac{1}{4}.420=105\\\frac{z}{\frac{1}{6}}=420\Rightarrow z=\frac{1}{6}.420=70\end{cases}}\)
Vậy ......................................
mk nhầm sửa lại:
ta có:
\(3x=4y\Rightarrow\)\(\frac{x}{4}=\frac{y}{3}\)
\(5y=6z\)\(\Rightarrow\frac{y}{6}=\frac{z}{5}\)
\(\frac{x}{4}=\frac{y}{3};\frac{y}{6}=\frac{z}{5}\Rightarrow\)\(\frac{x}{24}=\frac{y}{18}=\frac{z}{15}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{24^2}=\frac{y^2}{18^2}=\frac{z^2}{15^2}=\frac{x^2+y^2+z^2}{24^2+18^2+15^2}=\frac{500}{1125}=\frac{4}{9}\)
\(\frac{x^2}{24^2}=\frac{4}{9}\Rightarrow x=\sqrt{\frac{4\cdot24^2}{9}}=16\)
\(\frac{y^2}{18^2}=\frac{4}{9}\Rightarrow y=\sqrt{\frac{4\cdot18^2}{9}}=12\)
\(\frac{z^2}{15^2}=\frac{4}{9}\Rightarrow z=\sqrt{\frac{15^2\cdot4}{9}}=10\)
Vậy x = 16, y = 12, z = 10
ĐKXĐ: \(z\ne0\)
Ta có: \(3x=4y=6z\)
\(\Leftrightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{6}}\)
Đặt \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{6}}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{k}{3}\\y=\frac{k}{4}\\z=\frac{k}{6}\end{matrix}\right.\)
Ta có: \(\frac{xy}{z}=-18\)
\(\Leftrightarrow xy=-18z\)
\(\Leftrightarrow\frac{k}{3}\cdot\frac{k}{4}=-18\cdot\frac{k}{6}\)
\(\Leftrightarrow\frac{k^2}{12}=\frac{-18k}{6}\)
\(\Leftrightarrow\frac{k^2}{12}=-3k\)
\(\Leftrightarrow k^2=-3k\cdot12=-36k\)
\(\Leftrightarrow k^2+36k=0\)
\(\Leftrightarrow k\left(k+36\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=0\\k+36=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k=0\\k=-36\end{matrix}\right.\)
Trường hợp 1: k=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{k}{3}=\frac{0}{3}=0\\y=\frac{k}{4}=\frac{0}{4}=0\\z=\frac{k}{6}=\frac{0}{6}=0\left(loại\right)\end{matrix}\right.\)
Trường hợp 2: k=-36
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{k}{3}=\frac{-36}{3}=-12\\y=\frac{k}{4}=\frac{-36}{4}=-9\\z=\frac{k}{6}=\frac{-36}{6}=-6\left(nhận\right)\end{matrix}\right.\)
Vậy: (x,y,z)=(-12;-9;-6)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
Ta có: 3x = 4y => \(\frac{x}{4}=\frac{y}{3}\) => \(\frac{x}{8}=\frac{y}{6}\)
5y = 6z => \(\frac{y}{6}=\frac{z}{5}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{6}=\frac{z}{5}=\frac{x+y-z}{8+6-5}=\frac{18}{9}=2\)
=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{6}=2\\\frac{z}{5}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.6=12\\z=2.5=10\end{cases}}\)
Vậy ....
Đặt \(\frac{x}{-5}=\frac{y}{6}=\frac{z}{-2}=k\) \(\left(k\ne0\right)\)
\(\Rightarrow x=-5k;y=6k;z=-2k\)
\(\Rightarrow A=\frac{3.k.\left(-5\right)+6.k-2.\left(-2\right).k}{-3.\left(-5\right).k-5.6.k+6.\left(-2\right).k}=\frac{-15k+6k+4k}{15k-30k-12k}=\frac{-5k}{-27k}=\frac{5}{27}\)
Vậy \(A=\frac{5}{27}\).
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{2x+y-z}{2\cdot4+3-2}=\dfrac{9}{9}=1\)
Do đó: x=4; y=3; z=2
\(\frac{2}{3x}=\frac{3}{4y}=\frac{5}{6z}\Rightarrow\frac{2}{30.3x}=\frac{3}{30.4y}=\frac{5}{30.6z}\Leftrightarrow\frac{1}{45x}=\frac{1}{40y}=\frac{1}{36z}\Rightarrow45x=40y=36z\)
\(\Rightarrow x=\frac{9}{8}y;x=\frac{5}{4}z\Rightarrow x^2+y^2+z^2=x^2+\frac{64}{81}x^2+\frac{16}{25}x^2\)
\(=x^2\left(1+\frac{2896}{2025}\right)=724\text{ :)) đến đây thôi :))}\)
\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{3}=\frac{z}{2}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{9}=\frac{117}{9}=13\)
\(\Rightarrow x=4.13=52;y=3.13=39;z=2.13=26\)