\(3n^4-14n^3+21n^2-10n⋮24\)

Hãy chứng minh 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(3n^4-14n^3+21n^2-10n\)

Nghiệm của đa thức trên là 3, bạn tự phân tích đa thức thành nhân tử nhé, tức là bằng:

=\(\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

=\(\left(n-1\right)n\left(3n^2-11n+10\right)\)

=\(\left(n-1\right)n\left(n-2\right)\left(3n-5\right)\)(làm hơi tắt, thông cảm)

=\(n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

=\(\left(n-1\right)\left(n-2\right)\left(3n+3\right)-n\left(n-1\right)\left(n-2\right)\cdot8\)

=\(3n\left(n-1\right)\left(n-2\right)\left(n+1\right)-8n\left(n-1\right)\left(n-2\right)\)

Ta có n(n-1)(n- 2) là tích 3 số nguyên liên tiếp nên chia hết cho 3=> 8n(n-1)(n-2) chia hết cho 3 và tích chia hết cho 8

Vì n(n- 1)(n- 2)(n+ 1) là tích 4 số nguyên liên tiếp nên chia hết cho 8

=> tổng trên chia hết cho 8

Mà (3,8)= 1 nên tổng chia hết cho 3*8=24

=> đa thức chia hết cho 24

Vậy ..............

16 tháng 3 2020

bạn giở lại sách ra nhé :)))0

25 tháng 9 2018

a/ n thuộc Z nha

a: \(=3n^4-3n^3-11n^3+11n^2+10n^2-10n\)

\(=\left(n-1\right)\left(3n^3-11n^2+10n\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(3n+3-8\right)\)

\(=3n\left(n-1\right)\left(n+1\right)\left(n-2\right)-8n\left(n-2\right)\left(n-1\right)\)

Vì n;n-1;n+1;n-2 là 4 số liên tiếp

nên n(n-1)(n+1)(n+2) chia hết cho 4!=24

mà -8n(n-2)(n-1) chia hết cho 24

nên A chia hết cho 24

b: \(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

Vì đây là 5 số liên tiếp

nên \(n\left(n-1\right)\cdot\left(n-2\right)\left(n+1\right)\left(n+2\right)⋮5!=120\)

 

NV
23 tháng 11 2019

\(A=n\left(n-1\right)\left(n-2\right)\left(3n-5\right)\)

\(A=3n\left(n-1\right)\left(n-2\right)\left(n+1\right)-8n\left(n-1\right)\left(n-2\right)\)

Cả 2 số hạng chứa tích 3 và 4 số nguyên liên tiếp nên đều chia hết cho 3

Số hạng thứ nhất chứa tích 4 số nguyên liên tiếp nên chia hết cho 8

Vậy \(A⋮24\)

8 tháng 6 2018

\(n^4+2n^3-13n^2-14n+24\)

\(=\left(n^4+2n^3-n^2-2n\right)-12n^2-12n+24\)

\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)-12n^2-12n+24⋮6\)

10 tháng 12 2015

Gọi ƯCLN(21n+4;14n+3)=d

Ta có: 21n+4 chia hết cho d 

2(21n+4)chia hết cho d

42n+8 chia hết cho d

có 14n+3 chia hết cho d

3(14n+3) chia hết cho d

42n+9 chia hết cho d

=>42n+9-(42n+8) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó,ƯCLN(21n+4;14n+3)=1

Vậy (21n+4)/(14n+3) tối giản với mọi nEZ