\(3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)chia het cho 6

giup mik voi

cam on nha!

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

=  \(3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(3^n.30+2^n.12\)

\(6.\left(3^n.5+2^n.2\right)⋮6\)

Ok nha bn :D 

23 tháng 6 2015

giai duoc roi cam on nhiu

18 tháng 2 2016

cho mình cách làm bài 3 phần b ?

26 tháng 1 2018

Ta có : 3^n+2 - 2^n+4 + 3^n + 2^n

= (3^n+2 + 3^n) - (2^n+4-2^n)

= 3^n-1.(3^3+3) - 2^n-1.(2^5-2) ( vì n nguyên dương nên n-1 >= 0 )

= 3^n-1.30 - 2^n-1.30

= 30.(3^n-1+2^n-1) chia hết cho 30

=> ĐPCM

Tk mk nha

4 tháng 9 2016

\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)

\(=3^{n+1}.\left(3^2+1\right)+2^{n+1}.\left(2^2+2\right)\)

\(=3^n.3.2.5+2^{n+1}.6\)

\(=3^n.6.5+2^{n+1}.6\)

\(=6.\left(3^n.5+2^{n+1}\right)\)chia hết cho 6

=> điều cần chứng minh

13 tháng 3 2017

8.2+2n+1 

=2n .(8+2)

=2n.10 chia hết cho 10

=> 8.2n +2n+1 chia hết cho 10

\(3^{n+3^{ }}-2.3^n+2^{n+5}-7.2^n\)

\(=3^n.\left(3^3-2\right)+2^n\left(2^5-7\right)\)

\(=3^n.25+2^n.25\)

=\(25.\left(3^n+2^n\right)\)chia hết cho 25

=>\(3^{n+3}-2.3^n+2^{n+5}-7.2^n\)

k cho mình nhé

9 tháng 1 2018

\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot3^2+3^n-2^n.2^2-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

23 tháng 3 2018

Đặt biểu thức là A. Ta có:

Tổng các số hạng của A là: 100-1+1=100 (số hạng)

Nhóm 4 số hạng liên tiếp với nhau được 25 nhóm như sau: 

A = (3x+1+3x+2+3x+3+3x+4)+(3x+5+3x+6+3x+7+3x+8)+...+(3x+97+3x+98+3x+99+3x+100)

A = 3x(3+32+33+34)+3x+4(3+32+33+34)+...+3x+96(3+32+33+34) = (3+32+33+34)(3x+3x+4+...+3x+96)

=> A = 120.(3x+3x+4+...+3x+96)

=> A chia hết cho 120 với mọi x thuộc N

7 tháng 8 2016

3n+2 - 2n+2 + 3n - 2n

= 3n(32 + 1) - 2n(22 + 1)

= 3n.10 - 2n.5

= 3n.10 - 2n-1.10

= 10(3n - 2n-1) chia hết cho 10

=> 3n+2 - 2n+2 + 3n - 2chia hết cho 10 (Đpcm)

7 tháng 8 2016

những bn nói truoc k bao gio thuc hiên, họ chỉ dụ bn gioi lam rui quen loi hua lien, tui bị lừa hoài

21 tháng 9 2018

a/ \(\frac{1}{n\left(n-1\right)\left(n+1\right)}=\frac{1}{n^3-n}>\frac{1}{n^3}\)

b/ \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n^3+3n^2+2n}< \frac{1}{n^3}\)

c/ Ap dụng câu b ta được

\(\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{2006^3}>\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2006.2007.2008}\)

\(=\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2006.2007}-\frac{1}{2007.2008}\right)\)

\(=\frac{1}{2}.\left(\frac{1}{2.3}-\frac{1}{2007.2008}\right)>\frac{1}{12}>\frac{1}{15}\)