K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2018

Giải:

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

Vậy ...

30 tháng 5 2017

a) 3(22+1)(24+1)(28+1)(216+1)

=(2+1)(2-1)(22+1)(24+1)(28+1)(216+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)

=(24-1)(24+1)(28+1)(216+1)

.......

=(216-1)(216+1)=232-1

NV
13 tháng 10 2019

\(\left(x+2\right)\left(x-2\right)-\left(x-3\right)\left(x+1\right)\)

\(=x^2-4-\left(x^2-2x-3\right)\)

\(=2x-1\)

\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

15 tháng 8 2017

Bài 1:

a,\(127^2+146.127+73^2=127^2+2.127.73+73^2\)\(=\left(127+73\right)^2=200^2=40000\)

b,\(9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\)

\(18^8-\left(18^8-1\right)=1\)

\(c,100^2-99^2+98^2-97^2+...+2^2-1\)

\(=\left(100-99\right)\left(100+99\right)+\left(98-97\right)\left(98+97\right)+...+\left(2-1\right)\left(2+1\right)\)\(=199+195+...+3\)

áp dụng công thức Gauss ta đc đáp án là:10100

d, mk khỏi ghi đề dài dòng:

\(\dfrac{\left(780-220\right)\left(780+220\right)}{\left(125+75\right)^2}=\dfrac{560000}{40000}=14\)Bài 2:

\(A=\left(2-1\right)\left(2+1\right)\)\(\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)Cứ tiếp tục ta đc \(A=2^{32}-1< B=2^{32}\)

\(\left(3-1\right)C=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^2+16\right)\)giải như câu a đc:\(\left(3-1\right)C=3^{32}-1\)

\(\Rightarrow C=\dfrac{3^{32}-1}{3-1}=\dfrac{3^{32}-1}{2}< D=3^{32}-1\)

21 tháng 8 2017

1c,

\(=100^2-99^2+98^2-97^2+...+2^2-1^2\\ =\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2+1\right)\left(2-1\right)\\ =\left(100+99\right)\cdot1+\left(98+97\right)\cdot1+...+\left(2+1\right)\cdot1\\ =100+99+98+97+...+2+1\\ =\dfrac{100\cdot101}{2}=5050\)

7 tháng 7 2017

Hỏi đáp Toán

19 tháng 10 2020

a) Ta có F = \(\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)

=> 8F = \(8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)-3^{16}\)

=> 8F = \(\left(3^8-1\right)\left(3^8+1\right)-3^{16}=3^{16}-1-3^{16}=-1\)

=> F = -1/8

b) Ta có G = \(\left(2^3+1\right)\left(2^6+1\right)\left(2^{12}+1\right)-\frac{2^{24}}{7}\)

=> 7G = 7(23 + 1)(26 + 1)(212 + 1) - 224

=> 7G = (23 - 1)(23 + 1)(26 + 1)(212 + 1) - 224

=> 7G = (26 - 1)(26 + 1)(212 + 1) - 224

=> 7G = (212 - 1)(212 + 1) - 224

=> 7G = 224 - 1 - 224

=> 7G = -1

=>  G = -1/7

19 tháng 10 2020

\(F=\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\frac{3^{16}}{8}\)

<=> \(\left(3^2-1\right)F=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)-\left(3^2-1\right)\frac{3^{16}}{8}\)

<=> \(8F=\left(3^4-1\right)\left(3^4+1\right)\left(3^8-1\right)-3^{16}\)

<=> \(8F=\left(3^8+1\right)\left(3^8-1\right)-3^{16}\)

<=> \(8F=\left(3^{16}-1\right)-3^{16}=-1\)

<=> F = -1/8

Câu G làm tương tự

1 tháng 12 2017

a)  (6x + 1)2 + (6x - 1)2 - 2(1 + 6x)(6x - 1) 

= (6x + 1 - 6x + 1)2 = 4

b) 3(22 + 1)(24 + 1)(28 + 1)(216 +1)

= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

= (24 - 1)(24 + 1)(28 + 1)(216 + 1) 

= (28 - 1)(28 + 1)(216 + 1)

= (216 - 1)(216 + 1) = 232 - 1

a: Sửa đề: \(\left(6x+1\right)^2-2\left(6x+1\right)\left(6x-1\right)+\left(6x-1\right)^2\)

\(=\left(6x+1-6x+1\right)^2=2^2=4\)

b: \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)