Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(37^2+2\cdot37\cdot13+13^2\)
\(=\left(37+13\right)^2=50^2=2500\)
b) Ta có: \(201^2=\left(200+1\right)^2\)
\(=200^2+2\cdot200+1\)
\(=40000+200+1=40201\)
c) Ta có: \(37\cdot43=\left(40+3\right)\cdot\left(40-3\right)\)
\(=40^2-3^2=1600-9=1591\)
áp dụng hằng đẳng thức là đc nha .
37^2 + 2.37.13 + 13^2
= ( 37 + 13 ) ^2
= 50^2
= 2500
chúc bn hk tốt
a) Ta có : \(37^{n+1}-37^n=37^n.\left(37-1\right)=37^n.36⋮6^2\)
b) \(79^{n+5}+79^{n+4}\)
\(=79^{n+4}.\left(79+1\right)=79^{n+4}.80⋮20\)
b) \(13^{n+2}-13^{n+1}+13^n=13^n\left(13^2-13+1\right)=13^n.157⋮157\)
d) \(n^3-n=n.\left(n-1\right)\left(n+1\right)⋮6\)
e) \(n^3-4n=n.\left(n^2-4\right)=n\left(n-2\right)\left(n+2\right)\)
Vì \(n=2k+2\) ( Chẵn ) nên :
\(n\left(n-2\right)\left(n+2\right)=\left(2k+2\right)\left(2k+2-2\right)\left(2k+2+2\right)=8\left(k+1\right)k\left(k+2\right)⋮48\)
a) 37n+1 - 37n = 37n( 37 - 1 ) = 37n.36 \(⋮\)62
b) 79n+5 + 79n+4 = 79n+4( 79 + 1 ) = 79n+4.80 \(⋮\)20
c) 13n+2 - 13n+1 + 13n = 13n( 132 - 13 + 1 ) = 13n.157 \(⋮\)157
d) n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 ) \(⋮\)6
e) n3 - 4n = n( n2 - 4 ) = n( n - 2 )( n + 2 ) (*)
Vì n là số chẵn nên ta có thể đặt n = 2k
=> (*) = 2k( 2k - 2 )( 2k + 2 ) = ( 4k2 - 4k )( 2k + 2 ) = 8k3 - 8k = 8k( k2 - 1 ) = 8k( k - 1)( k + 1 )
Theo ý d) => k( k - 1)( k + 1 ) \(⋮\)6
=> 8k( k - 1)( k + 1 ) chia hết cho 48 hay n3 - 4n chia hết cho 48 ( với n chẵn )
Bài giải:
a) 732 – 272 = (73 + 27)(73 – 27) = 100 . 46 = 4600
b) 372 - 132 = (37 + 13)(37 – 13) = 50 . 25 = 100 . 12 = 1200
c) 20022 – 22 = (2002 + 2)(2002 – 2) = 2004 . 2000 = 400800
\(\frac{x+2}{13}+\frac{2x+45}{15}=\frac{3x+8}{37}+\frac{4x+69}{9}\)
\(\Leftrightarrow\left(\frac{x+2}{13}+1\right)+\left(\frac{2x+45}{15}-1\right)=\left(\frac{3x+8}{37}+1\right)+\left(\frac{4x+69}{9}-1\right)\)
\(\Leftrightarrow\frac{x+15}{13}+\frac{2\left(x+15\right)}{15}=\frac{3\left(x+15\right)}{37}+\frac{4\left(x+15\right)}{9}\)
\(\Leftrightarrow\left(x+15\right)\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{7}-\frac{4}{9}\right)=0\)
mà \(\left(\frac{1}{13}+\frac{2}{15}-\frac{3}{7}-\frac{4}{9}\right)\ne0\)
\(\Leftrightarrow x+15=0\Leftrightarrow x=-15\)
Vậy x=-15
Giải phương trình
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
\(\Leftrightarrow\)\(\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\)
\(\Leftrightarrow\)\(\dfrac{x+2}{13}+\dfrac{13}{13}+\dfrac{2x+45}{15}-\dfrac{15}{15}=\dfrac{3x+8}{37}+\dfrac{37}{37}+\dfrac{4x+69}{9}-\dfrac{9}{9}\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2x+30}{15}=\dfrac{3x+45}{37}+\dfrac{4x+60}{9}\)
\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}=\dfrac{3\left(x+15\right)}{37}+\dfrac{4\left(x+15\right)}{9}\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}\right)=\left(x+15\right)\left(\dfrac{3}{37}+\dfrac{4}{9}\right)\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}\right)-\left(x+15\right)\left(\dfrac{3}{37}+\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+15=0\\\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15\\\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\ne0\end{matrix}\right.\)
Do đó: \(x=-15\)
Vậy \(S=\left\{-15\right\}\)
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\)
\(\Leftrightarrow\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\)\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}=\dfrac{3\left(x+15\right)}{37}+\dfrac{4\left(x+15\right)}{9}\)\(\Leftrightarrow\dfrac{x+15}{13}+\dfrac{2\left(x+15\right)}{15}-\dfrac{3\left(x+15\right)}{37}-\dfrac{4\left(x+15\right)}{9}=0\)\(\Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}+\dfrac{4}{9}\right)=0\)
\(\Leftrightarrow x+15=0\)
\(\Leftrightarrow x=-15\)
Vậy x = -15.
\(\dfrac{x+2}{13}+\dfrac{2x+45}{15}=\dfrac{3x+8}{37}+\dfrac{4x+69}{9}\\ \Leftrightarrow\dfrac{x+2}{13}+1+\dfrac{2x+45}{15}-1=\dfrac{3x+8}{37}+1+\dfrac{4x+69}{9}-1\\ \Leftrightarrow\dfrac{x+15}{13}+\dfrac{2x+30}{15}=\dfrac{3x+45}{37}+\dfrac{4x+60}{9}\)
\(\Leftrightarrow\left(x+15\right)\dfrac{1}{13}+\left(x+15\right)\dfrac{2}{15}=\left(x+15\right)\dfrac{3}{37}+\left(x+15\right)\dfrac{4}{9}\\ \Leftrightarrow\left(x+15\right)\left(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\right)=0\)
vì:\(\dfrac{1}{13}+\dfrac{2}{15}-\dfrac{3}{37}-\dfrac{4}{9}\ne0\) nên:
x+15=0 =>x=-15
vậy phương trình có tập nghiệm là S={-15}
<=>(x+2/13)+1+(2x+45/15)-1 = (3x+8/37)+1+(4x+69/9)-1
<=> x+15/13 + 2x+30/15 = 3x+45/37 + 4x+60/9
<=>(x+15)(1/13+2/15-3/37-4/9) = 0
<=> x+15=0( vì 1/13+2/15-3/37-4/9=0)
<=>x=-15......
\(37^2+2.37.13+13^2\\ =\left(37+13\right)^2=50^2=2500\)