Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=3+3^2+3^3+......+3^{2006}\)
=> \(3A=3^2+3^3+......+3^{2007}\)
=> \(3A-A=3^{2007}-3\)
=> \(2A=3^{2007}-3\)
=> \(A=\frac{3^{2007}-3}{2}\)
b) Ta có : \(2A=3^{2007}-3\) (theo ý a)
=> \(2A+3=3^{2007}\)
=> x = 2007
\(A=3+3^2+3^3+.........+3^{2006}\)
\(\Leftrightarrow3A=3^2+3^3+.........+3^{2007}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+.......+3^{2007}\right)-\left(3+3^2+.....+3^{2006}\right)\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
\(\Leftrightarrow2A+3=3^{2007}\)
\(\Leftrightarrow3^x=3^{2007}\)
\(\Leftrightarrow x=2007\left(tm\right)\)
\(A=3+3^2+3^3+.......+3^{2006}\)
\(\Leftrightarrow3A=3^2+3^3+......+3^{2007}\)
\(\Leftrightarrow3A-A=3^{2007}-3\)
\(\Leftrightarrow2A=3^{2007}-3\)
\(\Leftrightarrow A=\frac{3^{2007}-3}{2}\)
\(\Leftrightarrow2A+3=2^{2007}\)
\(\Leftrightarrow2^{2007}=2^x\)
\(\Leftrightarrow x=2007\)
\(3A=3^2+3^3+....+3^{2007}\)
\(3A-A=\left(3^2+3^3+...+3^{2007}\right)-\left(3+3^2+...+3^{2006}\right)\)
\(2A=3^{2007}-3\)
\(A=\frac{3^{2007}-3}{2}\)
b)\(2A+3=3^x\)
\(2A=3^x-3\)
Mà:\(2A=3^{2007}-3\)
\(\Rightarrow x=2007\)
A = 31+32+33+.....+32006
3A = 32+33+34+....+32007
2A = 3A - A = 32007-3
=> A = \(\frac{3^{2007}-3}{2}\)
Vì 2A = 32007-3
=> 2A + 3 = 32007
Mà 2A + 3 = 3x
=> 3x = 32007
=> x = 2007
3A = 32 + 33 + 34 + ... + 32007
3A - A = 32007 - 3
2A = 32007 - 3
A = ( 32007 - 3 ) : 2
ta có : 32007 - 3 + 3 = 3x
32007 = 3x
=> x = 2007
a)3A=3(31+32+33+...+32006)
3A=3.31+3.32+3.33+...+3.32006
3A=32+33+...+32007
3A-A=(32+33+...+32007)-(31+32+...+32006)
2A=32007-3
A=(32007-3):2
b)thay A vào ta được
32007-3+3=3x
32007=3x
=>x=2007
a) A = \(3^1+3^2+3^3+.....+3^{2006}\)
=> \(3A=3^2+3^3+3^4+....+3^{2007}\)
=> \(3A-A=3^{2007}-3^1=>2A=3^{2007}-3=>A=\dfrac{3^{2007}-3}{2}\)
b) Thay vào: 2A + 3 = \(3^x\) => \(3^{2007}-3\) + 3 = \(3^x\)
=> \(3^{2007}=3^x=>x=2007\)
Chúc bn học tốt, học 24h ơi chọn cho mình nha
3A=\(3^2+3^3+3^4+...+3^{2007}\)
3A-A=2A=\(3^{2007}-3\)
A=\(\frac{3^{2007}-3}{2}\)
b.
2A+3=3^x
3^2007-3+3=3^x
3^2007=3^x
vay x=2007
ta có : 3A=32+33+...+32007
3A-A=32+33+34+....+32007-3-32-33-...-32006
2A=32007-3
A=\(\frac{3^{2007}-3}{2}\)
b,
2A+3=3x
<=>32007-3+3=3x
<=> 32007=32007
<=> x = 2007
vậy x =2007
a) \(A=3^1+3^2+...+3^{2006}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2007}\)
\(\Rightarrow3A-A=3^{2007}-3\)
\(\Rightarrow A=\frac{3^{2007}-3}{2}\)
b) \(2A+3=3^{2007}=3^x\Rightarrow x=2007\)
Bt lm câu đầu thoiiiii
a) A = \(3^1+3^2+3^3+...+3^{20}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+...+3^{20}+3^{21}\)
\(\Leftrightarrow3A-A=3^{21}-3\)
\(\Leftrightarrow2A=3^{21}-3\)
\(\Leftrightarrow A=\frac{3^{21}-3}{2}\)
Vậy \(A=\frac{3^{21}-3}{2}\)
b) Theo câu a ta có \(2A=3^{21}-3\)
\(\Leftrightarrow2A+3=3^{21}\) (1)
Theo bài ra ta có \(2A+3=3^x\) (2)
Từ (1) và (2) <=> \(3^x=3^{21}\)
<=> x = 21
Vậy x = 21
@@ Học tốt
Chiyuki Fujito
\(3A=3^2+3^3+3^4+...+3^{2007}\)
\(\Rightarrow3A-A=2A=3^{2007}-3^1=3.\left(3^{2006}-1\right)\)
Do đó \(A=\frac{3.\left(3^{2006}-1\right)}{2}\)
Ta có : \(2A+3=3^{2007}-3+3=3^{2007}=3^x\)
\(\Rightarrow x=2007\)
1/ 3A-A=32007-3 <=> 2A=32007-3 => A=\(\frac{3^{2007}-3}{2}\)
2/ 2A=32007-3 => 2A+3=32007=3x => x=2007