K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

Ta có:

\(2x=3y\)

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)

\(5y=7z\)

\(\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) (2)

Từ (1) và (2) suy ra: \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.21\\y=2.14\\z=2.10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\)

5 tháng 11 2017

Theo bài ra ta có:

\(+)2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\)

\(+)5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\)

\(\Leftrightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=2\Rightarrow x=42\\\dfrac{y}{14}=2\Rightarrow y=28\\\dfrac{z}{10}=2\Rightarrow z=20\end{matrix}\right.\)

Vậy ............................

28 tháng 12 2018

a) \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)

\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) (2)

Từ (1) và (2) \(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

\(3x-7y+5z=30\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=2\\\dfrac{y}{14}=2\\\dfrac{z}{10}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\).

b) Cách làm giống y hệt câu a nhé! Không khác đâu vì \(3x-7y+5z=3x+5z-7y\), nó chỉ đổi đổi vị trí các số hạng thoy.

26 tháng 7 2017

a) Ta có  : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)  

                \(\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{10}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{10}=\frac{x}{8}-\frac{2y}{24}+\frac{z}{10}=\frac{x-2y+z}{8-24+10}=\frac{27}{-6}=\frac{9}{-2}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{9}{-2}\Rightarrow x=-36\\\frac{y}{12}=\frac{9}{-2}\Rightarrow y=-54\\\frac{z}{10}=\frac{9}{-2}\Rightarrow z=-45\end{cases}}\)

Vậy ....

b) Ta có : \(5x=9y\Rightarrow x=\frac{9y}{5}\)

Thay \(x=\frac{9y}{5}\)vào biểu thức \(2x-3y=30\);ta được : 

\(\frac{2.9y}{5}-3y=30\Rightarrow18y-15y=150\Rightarrow3y=150\Rightarrow y=50\)

Với \(y=50\Rightarrow x=\frac{9.50}{5}=90\)

Vậy .....

c) Ta có : \(x\div y\div z=3\div4\div5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2-2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)

Do đó : \(\hept{\begin{cases}\frac{x}{3}=4\Rightarrow x=12\\\frac{y}{4}=4\Rightarrow y=16\\\frac{z}{5}=4\Rightarrow z=20\end{cases}}\)

Vậy ... 

d) Ta có  : \(2x=3y\Rightarrow x=\frac{3y}{2}\left(1\right)\)

                \(5y=7z\Rightarrow z=\frac{5y}{7}\left(2\right)\)

Thay (1) và (2) vào biểu thức \(3x-7y+5z=-30\);ta được : 

\(\frac{3.3y}{2}-7y+\frac{5.5y}{7}=-30\)

\(\Leftrightarrow63y-98y+50y=-420\)

\(\Leftrightarrow15y=-420\Rightarrow y=-28\)

Với \(y=-28\Rightarrow x=\frac{3.-28}{2}=-42;z=\frac{5.-28}{7}=-20\)

e) Ta có : \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}\)

 \(\Rightarrow x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)

Với \(k=2\Rightarrow\frac{x}{7}=2\Rightarrow x=14;\frac{y}{3}=2\Rightarrow y=6\)

Với \(k=-2\Rightarrow\frac{x}{7}=-2\Rightarrow x=-14;\frac{y}{3}=-2\Rightarrow y=-6\)

Vậy ...

26 tháng 7 2017

a) ta có:

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)

\(\frac{y}{6}=\frac{2y}{12}\)

 \(\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}\) (1)

áp dụng tính chất của dãy tỉ số bằng nhau,ta có:

\(\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}=\frac{x-2y+z}{4-12+5}=\frac{27}{-3}=-9\)        (2)

từ (1) và (2) suy ra:

\(\frac{x}{4}=-9\Rightarrow x=-9.4=-36\)

..................................y;z bn tự tính ha!^^

b) ta có:

\(5x=9y\Rightarrow\frac{x}{9}=\frac{y}{5}\)

\(\frac{x}{9}=\frac{2x}{18};\frac{y}{5}=\frac{3y}{15}\)

thui làm đến bước này thì bn tự làm nốt nha! làm câu d cũng tương  tự lun! (câu c mk ko pik làm đâu!^^)

e) 

ta có:

3x=7y \(\Rightarrow\frac{x}{7}=\frac{y}{3}\)

đặt \(\frac{x}{7}=\frac{y}{3}=k\left(k\in Z\right)\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)

vì xy = 84 nên :   7k.3k = \(84\)

                      \(\Rightarrow21k^2=84\)

                      \(\Rightarrow k^2=4=2^2=\left(-2\right)^2\)

với k = 2 thì x =........... ; y=................

với k=-2 thì x=........ ; y=.................... 

ự làm nốt ha!the end!^^

                 

11 tháng 7 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)

\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

Áp dụng tính chát dãy tỉ số = nhau ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)

\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)

\(\frac{y}{15}=2\Rightarrow y=30\)

\(\frac{z}{21}=3\Rightarrow z=63\)

11 tháng 7 2019

b, Tự làm

c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)

\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)

\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)

Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)

\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)

\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)

\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)

Vậy \((x,y)\in(6,15);(-6,-15)\)

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

25 tháng 9 2018

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)

suy ra:  \(x=2k;\)\(y=3k;\)\(z=4k\)

Ta có:   \(x^2+y^2+z^2=116\)

<=>  \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)

<=>  \(29k^2=116\)

<=>  \(k^2=4\)

<=>  \(k=\pm2\)

tự làm nốt

10 tháng 7 2021

Trả lời:

1, Ta có:  \(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{4}\)

\(\Rightarrow x+y+y+z+z+x=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)

\(\Rightarrow2x+2y+2z=\frac{13}{12}\)

\(\Rightarrow2\left(x+y+z\right)=\frac{13}{12}\)

\(\Rightarrow x+y+z=\frac{13}{24}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{13}{24}-\frac{1}{3}=\frac{5}{24}\\y=\frac{13}{24}-\frac{1}{4}=\frac{7}{24}\\z=\frac{13}{24}-\frac{1}{2}=\frac{1}{24}\end{cases}}\)

2, Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

Áp dụng tc dãy tỉ số bằng nhau, ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{5.3-5+3.\left(-2\right)}=\frac{124}{4}=31\)

\(\Rightarrow\hept{\begin{cases}x=93\\y=155\\z=-62\end{cases}}\)

3, Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)

Từ (1) và (2) => \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Áp dụng tc dãy tỉ số bằng nhau, ta có:

\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x-7y+5x}{3.21-7.14+5.10}=\frac{30}{15}=2\)

\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)

27 tháng 7 2016

2x=3y => \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)

                                                                              \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

5y=7z => \(\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\) 

áp dụng tính chất của dãy tỉ số bằng nhau(còn lại tự tính)

27 tháng 7 2016

kích nha s3.jpgPhạm Quang Huy

 

15 tháng 7 2017

Theo bài ra ta có :

\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{3}=\dfrac{7y}{14}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) \(\left(1\right)\)

\(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{2y}{14}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) \(\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra : \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\Rightarrow\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x+5z-7y}{63+50-98}=\dfrac{30}{15}=2\\ \)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x}{63}=2\Rightarrow\dfrac{x}{21}=2\Rightarrow x=42\\\dfrac{7y}{98}=2\Rightarrow\dfrac{y}{14}=2\Rightarrow y=28\\\dfrac{5z}{50}=2\Rightarrow\dfrac{z}{10}=2\Rightarrow z=20\end{matrix}\right.\\ \)

\(\text{Vậy }x=42\\ y=28\\ z=20\)

15 tháng 7 2017

Ta có:

\(2x=3y\Rightarrow10x=15y\)

\(5y=7z\Rightarrow15y=21z\)

\(\Rightarrow10x=15y=21z\Rightarrow\dfrac{10x}{210}=\dfrac{15y}{210}=\dfrac{21z}{210}\)

\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x+5z-7y}{3.21+5.14-7.10}\)

\(=\dfrac{30}{63+70-70}=\dfrac{30}{63}=\dfrac{10}{21}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{10}{21}.21=10\\y=\dfrac{10}{21}.14=\dfrac{20}{3}\\z=\dfrac{10}{21}.10=\dfrac{100}{21}\end{matrix}\right.\)

Chúc bạn học tốt!!!

22 tháng 4 2021

2x = 3y => 10x=15y
5y = 7z => 15y=21z
=> 10x=15y=21z =>x=2,1z
y=1,4z
Mà : 3x - 7y + 5z = 30 => 6,3z - 9,8z + 5z=30 =>1,5z=30
=>z=20
y=28
x=42

7 tháng 10 2021

Từ \(2x=3y\)\(\Rightarrow\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{7}=\frac{y}{2}.\frac{1}{7}=\frac{x}{21}=\frac{y}{14}\)( 1 )

Từ \(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}=\frac{y}{7}.\frac{1}{2}=\frac{z}{5}.\frac{1}{2}=\frac{y}{14}=\frac{z}{10}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)

Đặt \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=k\)

\(\Rightarrow\hept{\begin{cases}x=21k\\y=14k\\z=10k\end{cases}}\)

Thay vào \(3x+5z-7y=30\)ta có ;

\(3.21k+5.10k-7.14k=30\)

\(63k+50k-98k=30\)

\(15k=30\)

\(k=2\)

Thay vào ta được :

\(\Rightarrow\hept{\begin{cases}x=21.2\\y=14.2\\z=10.2\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=42\\y=28\\z=20\end{cases}}\)