\(2x^3 + 3x^2 - 32x =48\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2019

\(\Leftrightarrow2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow x^2\left(2x+3\right)-16\left(2x+3\right)=0\)

\(\Leftrightarrow\left(x^2-16\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\2x+3=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=-\frac{3}{2}\end{matrix}\right.\)

25 tháng 4 2019

\(a,\Leftrightarrow\left(x+5\right)\left(x-3\right)=0\Leftrightarrow x\in\left\{-5;3\right\}\)

\(b,\Leftrightarrow\left(3x-1\right)\left(3x+1\right)=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\3x-1=4x+1\end{cases}}\)

\(c,\Leftrightarrow\left(2x^3-32x\right)+\left(3x^2-48\right)=0\Leftrightarrow2x\left(x-4\right)\left(x+4\right)+3\left(x-4\right)\left(x+4\right)\)

\(\Leftrightarrow\left(2x+3\right)\left(x+4\right)\left(x-4\right)=0\Leftrightarrow......\)

25 tháng 4 2019

a, x1=3 ; x2=-5

b,x1=-2 ; x2=-1/3

AH
Akai Haruma
Giáo viên
8 tháng 2 2020

Lời giải:
a)

$x^2+2x-15=0$

$\Leftrightarrow x^2-3x+5x-15=0$

$\Leftrightarrow x(x-3)+5(x-3)=0$

$\Leftrightarrow (x-3)(x+5)=0$

$\Rightarrow x=3$ hoặc $x=-5$

b)

$9x^2-1=(3x+1)(4x+1)=12x^2+7x+1$

$\Leftrightarrow 3x^2+7x+2=0$

$\Leftrightarrow (x+2)(3x+1)=0$

$\Rightarrow x=-2$ hoặc $x=-\frac{1}{3}$

c)

$2x^3+3x^2-32x-48=0$

$\Leftrightarrow 2x^3-8x^2+11x^2-44x+12x-48=0$

$\Leftrightarrow 2x^2(x-4)+11x(x-4)+12(x-4)=0$

$\Leftrightarrow (x-4)(2x^2+11x+12)=0$

$\Leftrightarrow (x-4)(2x^2+8x+3x+12)=0$

$\Leftrightarrow (x-4)[2x(x+4)+3(x+4)]=0$

$\Leftrightarrow (x-4)(x+4)(2x+3)=0$

$\Rightarrow x=\pm 4$ hoặc $x=-\frac{3}{2}$

23 tháng 4 2019

a. \(3\left(x-1\right)\left(2x-1\right)=5\left(x+8\right)\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left[3\left(2x-1\right)-5\left(x+8\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x-3-5x-40\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-43\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=43\end{matrix}\right.\)

b. \(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)=\left(3x+1\right)\left(4x+1\right)\)

\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)

\(\Leftrightarrow-\left(3x+1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=-2\end{matrix}\right.\)

c. \(\left(2x+1\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow\left(2x+1\right)^2-\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)

\(\Leftrightarrow3x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

d. \(2x^3+3x^2-32x=48\)

\(\Leftrightarrow2x^3+3x^2-32x-48=0\)

\(\Leftrightarrow\left(2x^3-8x^2\right)+\left(5x^2-20x\right)-\left(12x-48\right)=0\)

\(\Leftrightarrow2x^2\left(x-4\right)+5x\left(x-4\right)-12\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(2x^2+5x-12\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left[\left(2x^2+8x\right)-\left(3x+12\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left[2x\left(x+4\right)-3\left(x+4\right)\right]=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\frac{3}{2}\end{matrix}\right.\)

e. \(x^2+2x-15=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(5x-15\right)=0\)

\(\Leftrightarrow x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

1)

ĐK: \(x,y\neq 0\); \(x+y\neq 0\)

\(\frac{x^2-y^2}{6x^2y^2}: \frac{x+y}{12xy}\)

\(=\frac{x^2-y^2}{6x^2y^2}. \frac{12xy}{x+y}=\frac{(x-y)(x+y).12xy}{6x^2y^2(x+y)}=\frac{2(x-y)}{xy}\)

2) ĐK: \(x\neq \frac{\pm 1}{2}; 0; 1\)

\(\frac{5x}{2x+1}: \frac{3x(x-1)}{4x^2-1}=\frac{5x}{2x+1}.\frac{4x^2-1}{3x(x-1)}\)

\(=\frac{5x(2x-1)(2x+1)}{(2x+1).3x(x-1)}=\frac{5(2x-1)}{3(x-1)}\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

3) ĐK: \(x\neq \frac{\pm 1}{2}; 0\)

\(\left(\frac{2x-1}{2x+1}-\frac{2x-1}{2x+1}\right): \frac{4x}{10x-5}=0: \frac{4x}{10x-5}=0\)

4) ĐK: \(x\neq \frac{\pm 1}{3}\)

\(\frac{2}{9x^2+6x+1}-\frac{3x}{9x^2-1}=\frac{2}{(3x+1)^2}-\frac{3x}{(3x-1)(3x+1)}\)

\(=\frac{2(3x-1)}{(3x+1)^2(3x-1)}-\frac{3x(3x+1)}{(3x-1)(3x+1)^2}\)

\(=\frac{6x-2-9x^2-3x}{(3x+1)^2(3x-1)}=\frac{-9x^2+3x-2}{(3x-1)(3x+1)^2}\)

5) ĐK: \(x\neq \pm 1; \frac{-7\pm \sqrt{89}}{4}\)

\(\left(\frac{5}{x^2+2x+1}+\frac{2x}{x^2-1}\right): \frac{2x^2+7x-5}{3x-3}\)

\(=\left(\frac{5}{(x+1)^2}+\frac{2x}{(x-1)(x+1)}\right). \frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{5(x-1)+2x(x+1)}{(x-1)(x+1)^2}. \frac{3(x-1)}{2x^2+7x-5}=\frac{2x^2+7x-5}{(x+1)^2(x-1)}.\frac{3(x-1)}{2x^2+7x-5}\)

\(=\frac{3}{(x+1)^2}\)

a) Ta có: \(2x^4+3x^3-9x^2-3x+2\)

\(=2x^4-2x^3-2x^2+5x^3-5x^2-5x-2x^2+2x+2\)

\(=2x^2\left(x^2-x-1\right)+5x\left(x^2-x-1\right)-2\left(x^2-x-1\right)\)

\(=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)

27 tháng 9 2020

Cảm ơn bạn!

\(A=\frac{2x^2-5x+2}{x^2-5x+6}=\frac{2x^2-4x-x+2}{x^2-2x-3x+6}=\frac{\left(2x-1\right)\left(x-2\right)}{\left(x-3\right)\left(x-2\right)}=\frac{2x-1}{x-3}\)

\(B=\frac{2x^5+3x^4-2x-3}{2x^3+3x^2+2x+3}=\frac{x^4\left(2x+3\right)-\left(2x+3\right)}{x^2\left(2x+3\right)+\left(2x+3\right)}=\frac{\left(x^4-1\right)\left(2x-3\right)}{\left(x^2+1\right)\left(2x-3\right)}=\frac{x^4-1}{x^2+1}=\frac{\left(x+1\right)\left(x-1\right)\left(x^2+1\right)}{x^2+1}=x^2-1\)

29 tháng 5 2020

5) 3x - 1 < 8

⇔ 3x < 9

⇔ x < 3

29 tháng 5 2020

4) -8x > 24

<=> x > 32

29 tháng 12 2015

Bạn đăng từng câu một thì sẽ có người giúp bạn đấy!

Tick cho mình nhé!

29 tháng 12 2015

dài thế

olm-logo.png