Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
tính delta rồi c/m cho (1) luôn có 2 ngiệm phân biệt
áp dụng định lí viet rồi thế vô là tìm dc m rồi xem điều kiên
rồi kết luận
\(x^2+2\left(m+2\right)x+4m-1=0\) \(\left(1\right)\)
\(\Delta'=\left(m+2\right)^2-4m+1\)
\(\Delta'=m^2+4m+4-4m+1\)
\(\Delta'=m^2+5>0\forall m\)
\(\Rightarrow pt\left(1\right)\) luôn có 2 nghiệm pb \(\forall m\)
theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=-2\left(m+2\right)\\x_1.x_2=4m-1\end{cases}}\)
theo bài ra \(x^2_1+x^2_2=30\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-30=0\)
\(\Leftrightarrow\left[-2\left(m+2\right)\right]^2-2.\left(4m-1\right)-30=0\)
\(\Leftrightarrow4.\left(m^2+4m+4\right)-8m+2-30=0\)
\(\Leftrightarrow4m^2+16m+16-8m-28=0\)
\(\Leftrightarrow4m^2+8m-12=0\)
\(\Leftrightarrow m^2+2m-3=0\) \(\left(#\right)\)
từ \(\left(#\right)\) ta có \(a+b+c=1+2-3=0\)
\(\Rightarrow pt\left(#\right)\) có 2 nghiệm \(m_1=1;m_2=-3\) ( TM \(\forall m\) )
vậy....
Ta có để pt có 2 nghiệm phân biệt thì:
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)
\(\Leftrightarrow m< 2\)
Theo vi-et ta có
\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)
Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)
\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)
\(\Leftrightarrow19m+52=0\)
\(\Leftrightarrow m=\frac{52}{19}\)(loại)
Không có m thỏa cái trên
PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé
a, Ta có x2- 2mx - m = 0 (1)
Với m=1 , (1)<=> x2- 2x-1=0
<=> x2-2x+1 -2 = 0
<=> (x-1)2=2
=>\(\left[{}\begin{matrix}x-1=-\sqrt{2}\\x-1=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}+1\\x=\sqrt{2}+1\end{matrix}\right.\)
b , câu b ko biết làm
\(\Delta=\left(m-1\right)^2+8\left(m+1\right)=\left(m+3\right)^2\ge0;\forall x\Rightarrow\) pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m-1}{2}\\x_1x_2=-\dfrac{m+1}{2}\end{matrix}\right.\)
\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=\dfrac{25}{16}\Leftrightarrow\dfrac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=\dfrac{25}{16}\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{25}{16}\left(x_1x_2\right)^2\)
\(\Rightarrow\left(\dfrac{m-1}{2}\right)^2+\dfrac{2\left(m+1\right)}{2}=\dfrac{25}{16}\left(\dfrac{m+1}{2}\right)^2\)
\(\Rightarrow9m^2+18m-55=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{3}\\m=-\dfrac{11}{3}\end{matrix}\right.\)