K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 1 2022

\(\Delta=\left(m-1\right)^2+8\left(m+1\right)=\left(m+3\right)^2\ge0;\forall x\Rightarrow\) pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m-1}{2}\\x_1x_2=-\dfrac{m+1}{2}\end{matrix}\right.\)

\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}=\dfrac{25}{16}\Leftrightarrow\dfrac{x_1^2+x_2^2}{\left(x_1x_2\right)^2}=\dfrac{25}{16}\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{25}{16}\left(x_1x_2\right)^2\)

\(\Rightarrow\left(\dfrac{m-1}{2}\right)^2+\dfrac{2\left(m+1\right)}{2}=\dfrac{25}{16}\left(\dfrac{m+1}{2}\right)^2\)

\(\Rightarrow9m^2+18m-55=0\Rightarrow\left[{}\begin{matrix}m=\dfrac{5}{3}\\m=-\dfrac{11}{3}\end{matrix}\right.\)

NV
14 tháng 4 2022

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

15 tháng 4 2022

undefined

27 tháng 4 2018

phương trình đâu vậy bạn

27 tháng 4 2018

Ở đề đấy bạn

9 tháng 4 2018

tính delta rồi c/m cho (1) luôn có 2 ngiệm phân biệt

áp dụng định lí viet rồi thế vô là tìm dc m rồi xem điều kiên 

rồi kết luận

9 tháng 4 2018

\(x^2+2\left(m+2\right)x+4m-1=0\)    \(\left(1\right)\)  

\(\Delta'=\left(m+2\right)^2-4m+1\)

\(\Delta'=m^2+4m+4-4m+1\)

\(\Delta'=m^2+5>0\forall m\)

\(\Rightarrow pt\left(1\right)\)  luôn có 2 nghiệm pb \(\forall m\)

theo định lí vi - ét \(\hept{\begin{cases}x_1+x_2=-2\left(m+2\right)\\x_1.x_2=4m-1\end{cases}}\)

theo bài ra \(x^2_1+x^2_2=30\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-30=0\)

\(\Leftrightarrow\left[-2\left(m+2\right)\right]^2-2.\left(4m-1\right)-30=0\)

\(\Leftrightarrow4.\left(m^2+4m+4\right)-8m+2-30=0\)

\(\Leftrightarrow4m^2+16m+16-8m-28=0\)

\(\Leftrightarrow4m^2+8m-12=0\)

\(\Leftrightarrow m^2+2m-3=0\)  \(\left(#\right)\)

từ \(\left(#\right)\)  ta có \(a+b+c=1+2-3=0\)

\(\Rightarrow pt\left(#\right)\)  có 2 nghiệm \(m_1=1;m_2=-3\) ( TM \(\forall m\) ) 

vậy....

20 tháng 1 2017

Ta có để pt có 2 nghiệm phân biệt thì:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)

\(\Leftrightarrow m< 2\)

Theo vi-et ta có

\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)

Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)

\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)

\(\Leftrightarrow19m+52=0\)

\(\Leftrightarrow m=\frac{52}{19}\)(loại)

Không có m thỏa cái trên

PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé

20 tháng 1 2017

Mơn bạn nhiều <3

15 tháng 4 2017

sao cho T đạt GTLN nha

15 tháng 4 2017

a, Ta có x2- 2mx - m = 0 (1)

Với m=1 , (1)<=> x2- 2x-1=0

<=> x2-2x+1 -2 = 0

<=> (x-1)2=2

=>\(\left[{}\begin{matrix}x-1=-\sqrt{2}\\x-1=\sqrt{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{2}+1\\x=\sqrt{2}+1\end{matrix}\right.\)

b , câu b ko biết làm