Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
pt <=>\(\sqrt{6x^2-12x+7}-\left(x^2-2x\right)=0\)
<=>\(\sqrt{6\left(x^2-2x+1\right)+1}-\left(x^2-2x+1\right)+1=0\)
<=> \(\sqrt{6\left(x-1\right)^2+1}-\left(x-1\right)^2=-1\)
Đặt \(\left(x-1\right)^2=a\left(a\ge0\right)\)
Có \(\sqrt{6a+1}-a=-1\)
<=> \(\sqrt{6a+1}=a-1\)
=> \(6a+1=a^2-2a+1\)
<=> \(a^2-2a-6a+1-1=0\)
<=>\(a^2-8a=0\) <=>a(a-8)=0
=> \(\left[{}\begin{matrix}a=0\\a=8\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}\left(x-1\right)^2=0\\\left(x-1\right)^2=8\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\left(ktm\right)\\x=2\sqrt{2}+1\left(tm\right)\\x=1-2\sqrt{2}\left(tm\right)\end{matrix}\right.\)
阮芳邵族 bạn có thể thấy trong căn luôn > hoặc = 1 => bt trong căn >0
=>luôn t/m với mọi x.
Đặt \(\sqrt{6x^2-12x+7}=t\left(t\ge0\right)\)
<=>\(t^2-7=6x^2-12x\)
\(\Leftrightarrow\dfrac{t^2-7}{6}=x^2-2x\)
Ta có pt mới:
\(\dfrac{7-t^2}{6}+t=0\)
\(\Leftrightarrow t^2-6t-7=0\)
\(\Leftrightarrow t^2-2\cdot t\cdot3+9-9-7=0\)
\(\Leftrightarrow\left(t-3\right)^2=16\)
\(\Rightarrow\left[{}\begin{matrix}t=7\\t=-1\end{matrix}\right.\)(loại t=-1)
Với t=7
=>\(\sqrt{6x^2-12x+7}=7\)
<=>6x2-12x+7=49
<=>6x2-12x-42=0
<=>x2-2x-7=0
<=>(x-1)2=8
=>\(\left[{}\begin{matrix}x=1+2\sqrt{2}\\x=1-2\sqrt{2}\end{matrix}\right.\)
Ta có: \(2x-x^2+\sqrt{6x^2-12x+7}=0\) ( ĐK: \(x\inℝ\))
\(\Leftrightarrow\sqrt{6x^2-12x+7}=x^2-2x\)
\(\Leftrightarrow\left(\sqrt{6x^2-12x+7}\right)^2=\left(x^2-2x\right)^2\)
\(\Leftrightarrow6x^2-12x+7=x^4-4x^3+4x^2\)
\(\Leftrightarrow x^4-4x^3-2x^2+12x-7=0\)
\(\Leftrightarrow\left(x^4-2x^3+x^2\right)-\left(2x^3-4x^2+2x\right)-\left(7x^2-14x+7\right)=0\)
\(\Leftrightarrow x^2\left(x^2-2x+1\right)-2x.\left(x^2-2x+1\right)-7.\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-7\right)\left(x-1\right)^2=0\)
+ \(\left(x-1\right)^2=0\)\(\Leftrightarrow\)\(x-1=0\)\(\Leftrightarrow\)\(x=1\)\(\left(TM\right)\)
+ \(x^2-2x-7=0\)\(\Leftrightarrow\)\(\left(x^2-2x+1\right)-8=0\)
\(\Leftrightarrow\)\(\left(x-1\right)^2=8\)
\(\Leftrightarrow\)\(x-1=\pm2\sqrt{2}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x-1=2\sqrt{2}\\x-1=-2\sqrt{2}\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=1+2\sqrt{2}\approx3,8284\left(TM\right)\\x=1-2\sqrt{2}\approx-1,8284\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{-1,8284;1;3,8284\right\}\)
\(2x-x^2+\sqrt{6x^2-12x+7}=0\Leftrightarrow\sqrt{6\left(x^2-2x\right)+7}=x^2-2x\)(1)
Đặt \(t=x^2-2x\)(t\(\ge0\))
Vậy (1)\(\Leftrightarrow\sqrt{6t+7}=t\Leftrightarrow6t+7=t^2\Leftrightarrow t^2-6t-7=0\Leftrightarrow t^2+t-7t-7=0\Leftrightarrow t\left(t+1\right)-7\left(t+1\right)=0\Leftrightarrow\left(t+1\right)\left(t-7\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}t+1=0\\t-7=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}t=-1\left(ktm\right)\\t=7\left(tm\right)\end{matrix}\right.\)\(\Leftrightarrow t=7\Leftrightarrow x^2-2x=7\Leftrightarrow x^2-2x-7=0\Leftrightarrow x^2-2x+1=8\Leftrightarrow\left(x-1\right)^2=8\Leftrightarrow x-1=\pm2\sqrt{2}\Leftrightarrow x=1\pm2\sqrt{2}\)Vậy S={\(1\pm2\sqrt{2}\)}
\(ĐKXĐ:0\le x\le6\)
\(\Leftrightarrow\sqrt{6x-x^2}-2\left(6x-x^2\right)+15=0\)
Đặt \(\sqrt{6x-x^2}=t\left(t\ge0\right)\)
PT trở thành:
\(2t^2-t-15=0\)
\(\Leftrightarrow\left(t-3\right)\left(2t+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=3\\t=\frac{-5}{2}\end{cases}}\)
\(TH1:t=3\Rightarrow\sqrt{6x-x^2}=3\Rightarrow6x-x^2=9\)
\(\Leftrightarrow x^2-6x+9=0\)
\(\Leftrightarrow\left(x-3\right)^2=0\)
\(\Leftrightarrow x=3\)
\(TH2:t=\frac{-5}{2}\)không TMĐK \(t\ge0\)
Vậy PT có nghiệm là \(S=\left\{3\right\}\)