Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 6x : 2 = 16
\(6x=16:2\)
\(6x=8\)
\(x=\frac{8}{6}=\frac{4}{3}\)
b) \(3^{x+1}=81\)
\(3^{x+1}=3^4\)
\(x+1=4\)
\(x=3.\)
HT
\(\dfrac{1}{2}\left(x-2\right)+\dfrac{1}{3}\left(2-x\right)=x\\ \Leftrightarrow\dfrac{1}{2}\left(x-2\right)-\dfrac{1}{3}\left(x-2\right)=x\\ \Leftrightarrow\left(x-2\right).\left(\dfrac{1}{2}-\dfrac{1}{3}\right)=x\\ \Leftrightarrow\left(x-2\right).\left(\dfrac{3-2}{6}\right)=x\\ \Leftrightarrow\left(x-2\right).\dfrac{1}{6}=x\\ \Leftrightarrow\dfrac{1}{6}x-\dfrac{1}{3}-x=0\\ \Leftrightarrow\left(\dfrac{1}{6}-1\right)x=\dfrac{1}{3}\\ \Leftrightarrow\left(\dfrac{1-6}{6}\right)x=\dfrac{1}{3}\\ \Leftrightarrow\dfrac{-5}{6}x=\dfrac{1}{3}\\ \Leftrightarrow x=\dfrac{1}{3}:\left(-\dfrac{5}{6}\right)\\ \Leftrightarrow x=-\dfrac{2}{5}\)
Vậy \(x=-\dfrac{2}{5}\)
Ta có :
\(\frac{-16}{32}=\frac{-16:16}{32:16}=\frac{-1}{2}\)
+)\(\frac{-1}{2}=\frac{x}{-10}\)
=> (-10) x (-1) = X x 2
=> 10 = X x 2
=> X = 10 : 2
=> X = 5
+) \(\frac{-1}{2}=\frac{-7}{y}\)
=> (-1) x Y = (-7) x 2
=> -Y = -14
=> Y = 14
+)\(\frac{-1}{2}=\frac{z}{24}\)
=> (-1) x 24 = Z x 2
=> -24 = Z x 2
=> Z = -24 : 2
=> Z = -12
Kết luận : X = 5
Y = 14
Z = 12
3 . ( 2x - 1 ) - 2 = 13
3 . ( 2x - 1 ) = 12 + 3
3 . ( 2x - 1 ) = 15
2x - 1 = 15 : 3
2x - 1 = 5
2x = 5 + 1 = 6
x = 6 : 2 = 3
Vậy x = 3
\(3\left(2x-1\right)-2=13\)
\(3\left(2x-1\right)=15\)
\(2x-1=5\)
\(2x=6\)
\(x=3\)
Tính tổng S=\(\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Làm giúp mk bài này nha!Cảm ơn mn nhiều:3
Bài 9:
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{z}{-17}=\dfrac{t}{9}=-2\)
=>x=-10; y=6; z=34; t=-18
Bài 10:
\(\Leftrightarrow\dfrac{8}{x}=\dfrac{y}{21}=\dfrac{40}{z}=\dfrac{16}{t}=\dfrac{u}{111}=\dfrac{4}{3}\)
=>x=6; y=28; z=30; t=12; u=148
\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(\Rightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(\Rightarrow A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)
\(\Rightarrow A=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)
\(\Rightarrow A=6\left(1+2^2+...+2^{98}\right)⋮6\)