Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b
.ta có
=-3/5+28/5.43/56+28/5.5/24-28/5.21/63
=-3/5+28/5.(43/56+5/24-21/63)
=5.9/14=45/14
suy ra
biểu thức b có giá trị là 45/14
a) 24.5 - [ 131. ( 13 - 4 )2 ]
=120 - [ 131 . 92 ]
=120 - [ 131 . 81 ]
=120 - 10611
= - 10491
b) 100 : {230:[450−(4−53−52.25)]}
= 100 : \(\left\{230:\left[450-\left(4-125-25.25\right)\right]\right\}\)
= \(100:\left\{230:\left[450-\left(4-125-625\right)\right]\right\}\)
= \(100:\left\{230:\left[450-\left(-746\right)\right]\right\}\)
=\(100:\left\{230:1196\right\}\)
= 100 : \(\dfrac{5}{26}\)= 520
b) 12000 - (1500 . 2 + 1800 . 3 + 1800 . 2 : 3) = 12000 - (3000 + 5400 + 1200)
= 12000 - 9600 = 2400
a) 80 - [130 - (12 - 4)2] = 80 - 130 + 82)
= -50 + 64
= 14
24.5 - [113 - (11 - 7)2]
= 16.5 - 113 + 42
= 80 - 113 + 16
= -33 + 16
= -17
5 + 3x+1 = 86
=> 3x+1 = 86 - 5
=> 3x+1 = 81 = 34
=> x + 1 = 4
=> x = 4 - 1
=> x = 3
\(a.\frac{2\cdot\left(-13\right)\cdot9\cdot10}{\left(-3\right)\cdot4\cdot\left(-5\right)\cdot26}\)
\(=\frac{2\cdot\left(-13\right)\cdot3\cdot3\cdot2\cdot5}{\left(-3\right)\cdot2\cdot2\cdot\left(-5\right)\cdot13\cdot2}\)
\(=-\frac{3}{2}\)
b) \(\frac{2^3\cdot3^4}{2^2\cdot3^2\cdot5}=\frac{2\cdot3^2}{5}=\frac{2\cdot9}{5}=\frac{18}{5}\)
\(\frac{2^4\cdot5^2\cdot11^2\cdot7}{2^3\cdot5^3\cdot7^2\cdot11}=\frac{2\cdot1\cdot11\cdot1}{1\cdot5\cdot7\cdot1}=\frac{22}{35}\)
c) \(\frac{121\cdot75\cdot130\cdot169}{39\cdot60\cdot11\cdot198}=\frac{11\cdot11\cdot13\cdot10\cdot169}{13\cdot3\cdot6\cdot10\cdot11\cdot11\cdot6\cdot3}\)
\(=\frac{169}{3\cdot6\cdot6\cdot3}=\frac{169}{324}\)
d) \(\frac{1998\cdot1990+3978}{1992\cdot1991-3984}\)
a) \(\left(x-4\right)^2=\left(x-4\right)^4\)
\(\Rightarrow\left(x-4\right)^2-\left(x-4^4\right)=0\)
\(\Rightarrow\left(x-4\right)^2.\left[1-\left(x-4\right)^2\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-4\right)^2=0\\1-\left(x-4\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\\left(x-4\right)^2=1^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-4=1\\x-4=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=5\\x=3\end{matrix}\right.\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{5\cdot6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}\)
\(A=\frac{5}{6}\)
\(B=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}\)
\(B=\frac{100}{2}\)
2^4.5-[131-(130-4)^2]
=16.5-[131-126^2]
=80-[131-15876]
=80--15745
=80+15745
=15825
\(2^4.5-\left[131-\left(130-4\right)^2\right]=1280-\left[131-15876\right]=1280-\left(-15745\right)=17025\)