Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x y z thoả mãn đẳng thức 1/x2022+1/y2022+1/z2022=1/x2021+1/y2021+1/z2021=1/x2020+1/y2020+1/z2020
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
2b,
Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp
Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt
vô đây đọc nhé
+, \(5x^2+5y^2+8xy-2x+2y+2=0\)
\(\Leftrightarrow4x^2+x^2+4y^2+y^2+8xy-2x+2y+1+1=0\)
\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\left(TM\right)\)
+, Thay x = 1 ; y = -1 vào M ta được :
\(M_{\left(1;-1\right)}=\left(1-1\right)^{2019}+\left(1-2\right)^{2020}+\left(-1+1\right)^{2021}\)
\(=1^{2020}=1\)
Vậy ...
\(\Leftrightarrow4x^2+8xy+4y^2+x^2+2x+1+y^2-2y+1=0\)
\(\Leftrightarrow4\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+1=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)
\(\Rightarrow M=1\)
Tổng = 4042 nha !!!