Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^{2\:}-2x+2=t\)
Được phương trình: \(\frac{t}{t+1}+\frac{t-1}{t}=\frac{1}{6}\)
Quy đồng và khử mẫu được: \(12t^2-6=t^2+t\)
<=> \(11t^2-t=6\)
r á. đến đó thỳ hk lm đk n~. pn xem lại đề đy na @@
nếu tìm x thì mk làm đc:
\(\frac{x}{3}+\frac{2x-6}{6}=2-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x}{6}+\frac{2x-6}{6}=\frac{6}{x}-\frac{x}{3}\)
\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{6-x}{3}\)
\(\Leftrightarrow\frac{2x+2x-6}{6}=\frac{2\left(6-x\right)}{2.3}=\frac{12-2x}{6}\)
<=>2x+2x-6=12-2x
<=>4x-6=12-2x
<=>4x-2x=12-6
<=>2x=6<=>x=3
Vậy x=3
Bài 1 dễ thì tự làm
Bài 2
\(y^2+2xy-3x-2=0\Leftrightarrow y^2+2xy+x^2=x^2+3x+2\)
\(\Leftrightarrow\left(x+y\right)^2=\left(x+1\right)\left(x+2\right)\)
Vế trái là số chính phương vế phải là tích 2 số nguyên liên tiếp nên 1 trong 2 số x+1 và x+2 phải có 1 số bàng 0
\(\Rightarrow y=-x\)
\(\orbr{\begin{cases}x+1=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\y=2\end{cases}}}}\)
Vậy \(\left(x;y\right)=\left(-1;1\right);\left(-2;2\right)\)
c: \(=\dfrac{1}{3x-2}-\dfrac{4}{3x+2}+\dfrac{3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{3x+2-12x+8+3x-6}{\left(3x-2\right)\left(3x+2\right)}\)
\(=\dfrac{-6x+4}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{-2}{3x+2}\)
d: \(=\dfrac{x^2-4-x^2+10}{x+2}=\dfrac{6}{x+2}\)
e: \(=\dfrac{1}{2\left(x-y\right)}-\dfrac{1}{2\left(x+y\right)}-\dfrac{y}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{x+y-x+y-2y}{2\left(x-y\right)\left(x+y\right)}=\dfrac{0}{2\left(x-y\right)\left(x+y\right)}=0\)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne2\\x\ne3\end{cases}}\)
\(A=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+1}{3-x}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}+\frac{-\left(x+3\right)}{x-2}-\frac{2x+1}{x-3}\)
\(=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}+\frac{-\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\frac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{\left(2x-9\right)-\left(x^2-9\right)+\left(2x^2-3x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{2x-9-x^2+9+2x^2-3x-2}{\left(x-2\right)\left(x-3\right)}=\frac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+1}{x-3}\)
b) \(A=\frac{1}{2}\)\(\Leftrightarrow\frac{x+1}{x-3}=\frac{1}{2}\)\(\Leftrightarrow2\left(x+1\right)=x-3\)
\(\Leftrightarrow2x+2=x-3\)\(\Leftrightarrow2x-x=-3-2\)
\(\Leftrightarrow x=-5\)
Vậy \(A=\frac{1}{2}\Leftrightarrow x=-5\)
c) Xem lại đề
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)
\(=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}\right):\left(\frac{x+2006}{x}\right)\)
\(=\frac{x^2-1}{x^2-1}:\frac{x+2006}{x}=\frac{x}{x+2006}\)
6+2x+2=2x-1-12
vo nghiem
\(\Rightarrow\frac{x+1}{3}=\frac{2x-1}{6}-3\)
\(\Rightarrow\frac{x+1}{3}=\frac{2x-19}{6}\)
=> 2(x + 1) = 2x - 19
2x + 2 = 2x - 19
2x - 2x = 2 + 19
0 = 21
Vậy không tồn tại x