Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\\ 2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\\ 2A-A=\left(1+\dfrac{1}{2}+...+\dfrac{1}{2^8}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^9}\right)\\ A=1-\dfrac{1}{2^9}=\dfrac{511}{512}\)
\(B=\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\\ 3B=\dfrac{3}{4}+\dfrac{3}{12}+\dfrac{3}{36}+\dfrac{3}{108}+\dfrac{3}{324}+\dfrac{3}{972}\\ 3B=\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\\ 3B-B=\left(\dfrac{3}{4}+\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}\right)-\left(\dfrac{1}{4}+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}+\dfrac{1}{972}\right)\\ 2B=\dfrac{3}{4}-\dfrac{1}{972}=\dfrac{182}{243}\\ B=\dfrac{364}{243}\)
a. 857+3,15+127+4,35
=\(\dfrac{61}{7}+\dfrac{63}{20}+\dfrac{9}{7}+\dfrac{87}{20}\)
=\(\left(\dfrac{61}{7}+\dfrac{9}{7}\right)+\left(\dfrac{63}{20}+\dfrac{87}{20}\right)\)
=\(10+\dfrac{15}{2}\)
=\(\dfrac{35}{2}\)
b. (4523−225+7713)−(3523−6613)
=\(4\dfrac{5}{23}-2\dfrac{2}{5}+7\dfrac{7}{13}-3\dfrac{5}{23}+6\dfrac{6}{13}\)
=\(\left(4\dfrac{5}{23}-3\dfrac{5}{23}\right)+\left(7\dfrac{7}{13}+6\dfrac{6}{13}\right)-2\dfrac{2}{5}\)
=\(1+14-\dfrac{12}{5}\)
=15-\(\dfrac{12}{5}\)
=\(\dfrac{63}{5}\)
Câu C khó khó mình chưa giải được !!!
\(-2\dfrac{1}{4}.\)\(\left(3\dfrac{5}{12}-1\dfrac{2}{9}\right)\)
=\(\dfrac{-9}{4}\).\(\left(\dfrac{41}{12}-\dfrac{11}{9}\right)\)
=\(\dfrac{-9}{4}.\dfrac{41}{12}-\dfrac{-9}{4}.\dfrac{11}{9}\)
=\(\dfrac{-123}{16}-\dfrac{-11}{4}\)
=\(\dfrac{-123}{16}-\dfrac{-44}{16}\)
=\(\dfrac{-79}{16}\)
\(\left(-25\%+0,75+\dfrac{7}{12}\right)\div\left(-2\dfrac{1}{8}\right)\)
=\(\left(\dfrac{-1}{4}+\dfrac{3}{4}+\dfrac{7}{12}\right)\div\left(\dfrac{-17}{8}\right)\)
=\(\left(\dfrac{-3}{12}+\dfrac{9}{12}+\dfrac{7}{12}\right).\dfrac{-8}{17}\)
=\(\dfrac{13}{12}.\dfrac{-8}{17}=\dfrac{-26}{51}\)
\(G=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\)
\(\Rightarrow2G=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}\)
\(\Rightarrow2G-G=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}\right)\)
\(\Rightarrow G=1-\dfrac{1}{32}=\dfrac{31}{32}\)
Ta có: \(A=\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{15}-1\right)\left(\dfrac{1}{21}-1\right)\left(\dfrac{1}{28}-1\right)\left(\dfrac{1}{36}-1\right)\)
\(=\dfrac{-2}{3}.\dfrac{-5}{6}.\dfrac{-9}{10}.\dfrac{-14}{15}.\dfrac{-20}{21}.\dfrac{-27}{28}.\dfrac{-35}{36}\)
\(=\dfrac{-2.\left(-5\right).3.\left(-3\right).2.\left(-7\right).\left(-4\right).5.\left(-3\right).9.5.\left(-7\right)}{3.2.3.2.5.3.5.3.7.4.7.4.9}\)
\(=\dfrac{-5}{3.4}=\dfrac{-5}{12}\)
Vậy \(A=\dfrac{-5}{12}.\)
\(C=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\)
\(2C=2\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2016}}\right)\)
\(2C=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+....+\dfrac{1}{2^{2015}}\)
\(2C-C=\left(2+1+\dfrac{1}{2}+...+\dfrac{1}{2^{2015}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)\)
\(C=2-\dfrac{1}{2^{2016}}\)
\(A=\dfrac{2^4.3^3+2^3.3^4}{2^5.3^4-2^6.3^3}=\dfrac{2^3.3^3.\left(2+3\right)}{2^5.3^3.\left(3-2\right)}=\dfrac{2^3.3^3.5}{2^5.3^3.1}\)
\(=\dfrac{5}{2^2}=\dfrac{5}{4}\)
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)
\(\Leftrightarrow D=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)
\(\Leftrightarrow D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(\Leftrightarrow D< \dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+\dfrac{4-3}{3.4}+...+\dfrac{10-9}{9.10}\)
\(\Leftrightarrow D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(\Leftrightarrow D< 1-\dfrac{1}{10}\)
\(\Leftrightarrow D< \dfrac{9}{10}< \dfrac{10}{10}=1\)
\(\Leftrightarrow D< 1\left(đpcm\right)\)
Câu 1:
a,\(x=\dfrac{1}{4}+\dfrac{2}{13}\)
\(x=\dfrac{13}{52}+\dfrac{8}{52}=\dfrac{21}{52}\)
Câu 2:
a,\(\dfrac{-2}{5}+\dfrac{3}{-4}+\dfrac{6}{7}+\dfrac{3}{4}+\dfrac{2}{5}\)
\(=\left(\dfrac{-2}{5}+\dfrac{2}{5}\right)+\left(\dfrac{3}{-4}+\dfrac{3}{4}\right)+\dfrac{6}{7}\)
=\(0+0+\dfrac{6}{7}=\dfrac{6}{7}\)
b,\(\dfrac{7}{15}+\dfrac{4}{-9}+\dfrac{-2}{11}+\dfrac{8}{15}+\dfrac{-5}{9}\)
=\(\left(\dfrac{7}{15}+\dfrac{8}{15}\right)+\left(\dfrac{4}{-9}+\dfrac{-5}{9}\right)+\dfrac{-2}{11}\)
=\(\dfrac{15}{15}+\dfrac{-9}{9}+\dfrac{-2}{11}=1+\left(-1\right)+\dfrac{-2}{11}\)
=\(0+\dfrac{-2}{11}=\dfrac{-2}{11}\)
c, \(\dfrac{-5}{7}+\dfrac{5}{13}+\dfrac{-20}{41}+\dfrac{8}{13}+\dfrac{-21}{41}\)
=\(\left(\dfrac{5}{13}+\dfrac{8}{13}\right)+\left(\dfrac{-20}{41}+\dfrac{-21}{41}\right)+\dfrac{-5}{7}\)
=\(\dfrac{13}{13}+\dfrac{-41}{41}+\dfrac{-5}{7}=1+\left(-1\right)+\dfrac{-5}{7}\)
=\(0+\dfrac{-5}{7}=\dfrac{-5}{7}\)
Quy đồng ( đây ngu toán không logic )
a)\(\dfrac{3}{6};\dfrac{2}{6};\dfrac{4}{6}\Rightarrow\dfrac{4}{6}>\dfrac{3}{6}>\dfrac{2}{6}\)
b)\(\dfrac{16}{9};\dfrac{24}{13}=\dfrac{208}{117};\dfrac{216}{117}\Rightarrow\dfrac{216}{117}>\dfrac{208}{117}\)
c)(Trời ơi cái đề bài)
h)\(\dfrac{27}{82};\dfrac{26}{75}=\dfrac{2025}{6150};\dfrac{2132}{6150}\Rightarrow\dfrac{2025}{6150}< \dfrac{2132}{6150}\)
d)(Trời ơi giống câu c)
i)\(\dfrac{-49}{78};\dfrac{64}{-95}=\dfrac{-4655}{7410};\dfrac{4992}{7410}\Rightarrow\dfrac{-4655}{7410}< \dfrac{4992}{7410}\)
P/s : Tự kết luận mỗi câu
a,\(\dfrac{1}{2}=\dfrac{1.3}{2.3}=\dfrac{3}{6}\),\(\dfrac{1}{3}=\dfrac{1.2}{3.2}=\dfrac{2}{6}\),\(\dfrac{2}{3}=\dfrac{2.2}{3.2}=\dfrac{4}{6}\)
vì có mẫu chung là 6 nên ta so sánh tử\(\Rightarrow\)ta so sánh 3,2,4
vì 2<3<4\(\Rightarrow\)\(\dfrac{2}{6}< \dfrac{3}{6}< \dfrac{4}{6}\Rightarrow\dfrac{1}{3}< \dfrac{1}{2}< \dfrac{2}{3}\)
\(1+\dfrac{1}{2}.\dfrac{3.2}{2}+\dfrac{1}{3}.\dfrac{4.3}{2}+...+\dfrac{1}{500}.\dfrac{501.500}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{501}{2}\)
\(=\dfrac{2+3+4+...+501}{2}\)
\(=\dfrac{\left(501-2+1\right).\left(501+2\right)}{4}\)
\(=\dfrac{\left(501-2+1\right).\left(501+2\right)}{4}=62875\)