Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)
\(\Leftrightarrow x+1=2017\Leftrightarrow x=2016\)
Vậy \(x=2016\)
1a.Vì \(\left|x\right|\) là 1 số tự nhiên nên \(\left|x\right|+2017\ge2017\)(1)
Mà ta đã biết:\(\dfrac{a}{b}\ge\dfrac{a}{b+n}\)với n là một số tự nhiên.
Nên từ (1)suy ra\(\dfrac{2016}{\left|x\right|+2017}\le\dfrac{2016}{2017}\)
Vậy để \(\dfrac{2016}{\left|x\right|+2017}\)lớn nhất thì \(\dfrac{2016}{\left|x\right|+2017}=\dfrac{2016}{2017}\)
1b.Ta thấy:
\(\dfrac{\left|x\right|+2016}{-2017}=\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)
Để \(\dfrac{-\left(\left|x\right|+2016\right)}{2017}\)lớn nhất thì \(-\left(\left|x\right|+2016\right)\)lớn nhất
Mà theo câu a,ta có:\(\left|x\right|\)+2016 là một số tự nhiên nên \(-\left(\left|x\right|+2016\right)\)mang dấu âm hay \(-\left(\left|x\right|+2016\right)\le0\)( chú ý \(-0=0\))
Vậy để \(-\left(\left|x\right|+2016\right)\)lớn nhất hay \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì \(\left|x\right|+2016=0\)
\(\Rightarrow\)Để \(\dfrac{\left|x\right|+2016}{-2017}\)lớn nhất thì nó bằng \(\dfrac{0}{-2017}\)hay nó bằng 0
2)
a)Để \(\dfrac{\left|x\right|+1945}{1975}\)nhỏ nhất thì \(\left|x\right|+1945\) nhỏ nhất
Vì \(\left|x\right|\ge0\) nên \(\left|x\right|+1945\ge1945\)
\(\Rightarrow\)Để \(\left|x\right|+1945\) nhỏ nhất thì \(\left|x\right|+1945\) = 1945
\(\Rightarrow\)Để \(\dfrac{\left|x\right|+1945}{1975}\)bé nhất thì nó phải bằng \(\dfrac{1945}{1975}\)hay\(\dfrac{389}{395}\)
b)Để \(\dfrac{-1}{\left|x\right|+1}\)thì \(\left|x\right|+1\)bé nhất
Vì \(\left|x\right|\ge0\) nên \(\left|x\right|+1\ge1\)
\(\Rightarrow\)Để \(\left|x\right|+1\)bé nhất thì \(\left|x\right|+1\)\(=1\)
\(\Rightarrow\)GTNN của \(\dfrac{-1}{\left|x\right|+1}\)là \(\dfrac{-1}{1}\) hay -1
\(B=\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)\left(1+\dfrac{1}{24}\right).....\left(1+\dfrac{1}{440}\right)\left(1+\dfrac{1}{483}\right)\)
\(B=\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}.....\dfrac{441}{440}.\dfrac{484}{483}\)
\(B=\dfrac{9.16.25.....441.484}{8.15.24.....440.483}\)
\(B=\dfrac{3.3.4.4.5.5.....21.21.22.22}{2.4.3.5.4.6.....20.22.21.23}\)
\(B=\dfrac{3.4.5.....21.22}{2.3.4.....20.21}.\dfrac{3.4.5.....21.22}{4.5.6.....22.23}\)
\(B=11.\dfrac{3}{23}=\dfrac{33}{23}\)
B = \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.\dfrac{25}{24}...\dfrac{121}{120}.\dfrac{144}{143}\)
B = \(\dfrac{4.9.16.25...121.144}{3.8.15.24....120.143}\)
B = \(\dfrac{2.2.3.3.4.4.5.5...11.11.12.12}{1.3.2.4.3.5.4.6...10.12.11.13}\)
B = \(\dfrac{2.3.4.5...11.12}{1.2.3.4.5...10.11}.\dfrac{2.3.4.5...11.12}{3.4.5.6.7...12.13}\)
B = 12 . \(\dfrac{2}{13}\)
B = \(\dfrac{24}{13}\)
9) \(\dfrac{x}{4}=\dfrac{9}{x}\)
Theo định nghĩa về hai phân số bằng nhau, ta có:
\(4\cdot9=x^2\\ 36=x^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
8)
\(x:\dfrac{5}{3}+\dfrac{1}{3}=-\dfrac{2}{5}\\ x:\dfrac{5}{3}=-\dfrac{2}{5}+\dfrac{1}{3}\\ x:\dfrac{5}{3}=-\dfrac{1}{15}\\ x=\dfrac{1}{15}\cdot\dfrac{5}{3}\\ x=\dfrac{1}{9}\)
7)
\(2x-16=40+x\\ 2x-x=40+16\\ x\left(2-1\right)=56\\ x=56\)
6)
\(1\dfrac{1}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}-\dfrac{3}{2}=-7-x\\ -7-x=0\\ x=-7-0\\ x=-7\)
5)
\(3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{7}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{7}{2}-\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{17}{6}\\ x=\dfrac{17}{6}:\dfrac{1}{2}\\ x=\dfrac{17}{3}\)
4)
\(x\cdot\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
3)
\(\left(\dfrac{2x}{5}+2\right):\left(-4\right)=-1\dfrac{1}{2}\\ \left(\dfrac{2x}{5}+2\right):\left(-4\right)=-\dfrac{3}{2}\\ \dfrac{2x}{5}+2=-\dfrac{3}{2}\cdot\left(-4\right)\\ \dfrac{2x}{5}+2=6\\ \dfrac{2x}{5}=6-2\\ \dfrac{2x}{5}=4\\ 2x=4\cdot5\\ 2x=20\\ x=20:2\\ x=10\)
2)
\(\dfrac{1}{3}+\dfrac{1}{2}:x=-0,25\\ \dfrac{1}{3}+\dfrac{1}{2}:x=-\dfrac{1}{4}\\ \dfrac{1}{2}:x=-\dfrac{1}{4}-\dfrac{1}{3}\\ \dfrac{1}{2}:x=-\dfrac{7}{12}\\ x=\dfrac{1}{2}:-\dfrac{7}{12}\\ x=-\dfrac{6}{7}\)
1)
\(\dfrac{4}{3}+x=\dfrac{2}{15}\\ x=\dfrac{2}{15}-\dfrac{4}{3}x=-\dfrac{6}{5}\)
Tìm x \(\in\) Z biết:
1) \(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)
\(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)
\(\left(\dfrac{1-x}{2017}+1\right)+\left(\dfrac{2-x}{2016}+1\right)=\left(\dfrac{3-x}{2015}+1\right)+\left(\dfrac{4-x}{2014}+1\right)\)
\(\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}=\dfrac{2018-x}{2015}+\dfrac{2018-x}{2014}\)
\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}-\dfrac{2018-x}{2015}-\dfrac{2018-x}{2014}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Mà \(\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)\ne0\)
\(\Leftrightarrow2018-x=0\Leftrightarrow x=2018\)
Vậy ...
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)
\(\Rightarrow x+1=2017\)
\(\Rightarrow x=2017-1=2016\)
Vậy x = 2016
\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+\(\dfrac{1}{x\left(x+1\right)}\) = \(\dfrac{2016}{2017}\)
1 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)
\(\dfrac{3}{4}\)+\(\dfrac{1}{x\left(x+1\right)}\)=\(\dfrac{2016}{2017}\)
\(\dfrac{1}{x\left(x+1\right)}\)= \(\dfrac{2013}{8068}\)
Bn tự lm tiếp nhé!!! Sorry mk đang vội
\(\dfrac{1-x}{2017}+\dfrac{2-x}{2016}=\dfrac{3-x}{2015}+\dfrac{4-x}{2014}\)
\(\Leftrightarrow\left(\dfrac{1-x}{2017}+1\right)+\left(\dfrac{2-x}{2016}+1\right)=\left(\dfrac{3-x}{2015}+1\right)+\left(\dfrac{4-x}{2014}+1\right)\)
\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}=\dfrac{2018-x}{2015}+\dfrac{2018-x}{2014}\)
\(\Leftrightarrow\dfrac{2018-x}{2017}+\dfrac{2018-x}{2016}-\dfrac{2018-x}{2015}-\dfrac{2018-x}{2014}=0\)
\(\Leftrightarrow\left(2018-x\right)\left(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\right)=0\)
Mà \(\dfrac{1}{2017}+\dfrac{1}{2016}-\dfrac{1}{2015}-\dfrac{1}{2014}\ne0\)
\(\Leftrightarrow2018-x=0\Leftrightarrow x=2018\)
Vậy ....
a ) \(5\left(x^2\right)+7x+2\)
\(\Leftrightarrow5x^2+7x+2=0\)
\(\Leftrightarrow5x^2+5x+2x+2=0\)
\(\Leftrightarrow\left(5x+2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=-1\end{matrix}\right.\)
Vậy .............
b ) \(\dfrac{x+1}{17}+\dfrac{x+2}{16}=\dfrac{x+3}{15}+\dfrac{x+4}{14}\)
\(\Leftrightarrow\dfrac{x+1}{17}+1+\dfrac{x+2}{16}+1=\dfrac{x+3}{15}+1+\dfrac{x+4}{14}+1\)
\(\Leftrightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}=\dfrac{x+18}{15}+\dfrac{x+18}{14}\)
\(\Leftrightarrow\dfrac{x+18}{17}+\dfrac{x+18}{16}-\dfrac{x+18}{15}-\dfrac{x+18}{14}=0\)
\(\Leftrightarrow\left(x+18\right)\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)=0\)
Vì \(\left(\dfrac{1}{17}+\dfrac{1}{16}-\dfrac{1}{15}-\dfrac{1}{14}\right)\ne0\)
Ta có : \(x+18=0\Leftrightarrow x=-18\)
Vậy ......
c ) \(\dfrac{x-1}{x-3}=\dfrac{x-4}{x-7}\)
\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=\left(x-3\right)\left(x-4\right)\)
\(\Leftrightarrow x^2-7x-x+7=x^2-4x-3x+12\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy ..
\(A=1\dfrac{1}{15}.1\dfrac{1}{16}.1\dfrac{1}{17}......1\dfrac{1}{2016}.1\dfrac{1}{2017}\)
\(A=\dfrac{16}{15}.\dfrac{17}{16}.\dfrac{18}{17}......\dfrac{2017}{2016}.\dfrac{2018}{2017}\)
\(A=\dfrac{16.17.18......2017.2018}{15.16.17......2016.2017}\)
\(A=\dfrac{2018}{15}\)
Bạn tính bằng công thức nào vậy?