Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Câu này đề chưa rõ rành lắm nên mk k làm nhé.
b) Đặt \(A=1+3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3A=3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow2A=3^{101}-1\)
\(\Rightarrow A=\frac{3^{101}-1}{2}\)
a) \(\frac{2015x\left(1-\frac{1}{2016}+\frac{1}{2017}\right)}{5x\left(1-\frac{1}{2016}+\frac{1}{2017}\right)}\)
\(=\frac{2015x}{5x}\)
\(=\frac{2015}{5}=403\)
\(2017-\left\{5^2.2^2-11\left[7^2-5.2^3+8\left(11^2-121\right)\right]\right\}\)
Đặt : \(A=2017-\left\{5^2.2^2-11\left[7^2-5.2^3+8\left(11^2-121\right)\right]\right\}\)
\(A=2017-\left\{25.4-11\left[49-5.8+8\left(121-121\right)\right]\right\}\)
\(A=2017-\left\{25.4-11\left[49-5.8+0\right]\right\}\)
\(A=2017-\left\{25.4-11\left[49-40\right]\right\}\)
\(A=2017-\left\{25.4-11.9\right\}\)
\(A=2017-\left\{25.4-99\right\}\)
\(A=2017-\left\{100-99\right\}\)
\(A=2017-1=2016\)
Vậy A = 2016
S=1/1-1/4+1/4-1/7+.........+1/N-1/N+1
=1/1-(1/4-1/4)+...............+(1/N-1/N)-1/N+1
=1-1/N+1
->S<1
NHA!
\(A=3+3^2+3^3+......+3^{99}+3^{100}\)
\(A=\left(3+3^2+3^3+3^4\right)+......+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(A=120+..........+3^{96}.\left(3+3^2+3^3+3^4\right)\)
Mà 120 \(⋮\)120
=> A \(⋮\)120 ( đpcm )
\(A=3+3^2+...+3^{100}\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(\Rightarrow A=\left(3+3^2+3^3+3^4\right)+...+3^{96}.\left(3+3^2+3^3+3^4\right)\)
\(\Rightarrow A=120+...+3^{96}.120\)
\(\Rightarrow A=120.\left(1+...+3^{96}\right)⋮120\left(đpcm\right)\)
xem lại đề đi mk nghĩ là 121 đấy
cả cái tổng đó phải chia hết cho 121
nhớ ghi cách giải lun nha
nhân vế đó vs 3 sau đó lấy vế đó trừ cho đề bài là sẽ ra