Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(1+\frac{1}{2}\right)-1+\frac{1}{6}+\left(\frac{1}{2}+\frac{1}{12}\right)-\frac{1}{2}+\frac{1}{20}+\left(\frac{1}{3}+\frac{1}{30}\right)-\frac{1}{3}+\frac{1}{42}+\left(\frac{1}{4}+\frac{1}{56}\right)-\frac{1}{4}+\frac{1}{72}\)
=\(=\left(1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{4}-\frac{1}{4}\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{72}\right)\)
\(=0+\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\right)=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=\left(1-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+...+\left(\frac{1}{8}-\frac{1}{8}\right)\)\(=\left(\frac{9}{9}-\frac{1}{9}\right)+0+...+0=\frac{8}{9}\)
\(M=\left(\dfrac{3}{2}-\dfrac{5}{6}+\dfrac{7}{12}-\dfrac{17}{72}\right)+\left(-\dfrac{9}{20}+\dfrac{11}{30}\right)+\left(\dfrac{-13}{42}+\dfrac{15}{56}\right)\)
\(=\dfrac{108}{72}-\dfrac{60}{72}+\dfrac{42}{72}-\dfrac{17}{72}+\dfrac{-27}{60}+\dfrac{22}{60}+\dfrac{-52}{168}+\dfrac{45}{168}\)
\(=\dfrac{73}{72}-\dfrac{1}{12}-\dfrac{1}{24}=\dfrac{73}{72}-\dfrac{6}{72}-\dfrac{3}{72}=\dfrac{64}{72}=\dfrac{8}{9}\)
\(A=-\frac{1}{20}+-\frac{1}{30}+...+-\frac{1}{90}\)
\(=-\frac{1}{4.5}+-\frac{1}{5.6}+...+-\frac{1}{9.10}\)
\(=\left(-\frac{1}{4}\right)-\left(-\frac{1}{5}\right)+\left(-\frac{1}{5}\right)-\left(-\frac{1}{6}\right)+...+\left(-\frac{1}{9}\right)-\left(-\frac{1}{10}\right)\)
\(=\left(-\frac{1}{4}\right)-\left(-\frac{1}{10}\right)=-\frac{3}{20}\)
Vậy \(A=-\frac{3}{20}\)
A= \(\frac{-1}{4\cdot5}+\frac{-1}{5\cdot6}+\frac{-1}{6\cdot7}+\frac{-1}{7\cdot8}+\frac{-1}{8\cdot9}+\frac{-1}{9\cdot10}\)
=\(-1\left(\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\)
=\(-1\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\right)\)
=\(-1\left(\frac{1}{4}-\frac{1}{10}\right)\)
=\(-1\cdot\frac{3}{20}\)
=\(\frac{-3}{20}\)
=\(\frac{-1}{20}\)
a, Ta thấy với a,b >0 thì \(\frac{a}{b}<\frac{a+n}{b+n}\), với a,b<0 thì \(\frac{a}{b}>\frac{a+\left(-n\right)}{b+\left(-n\right)}\) \(\left(n\in Z;\right)n>0\)
Vậy ta sắp xếp như sau:
\(-\frac{8}{9};-\frac{6}{7};-\frac{4}{5};-\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{5}{6};\frac{7}{8};\frac{9}{10}\)
b, Có:
\(\frac{0}{23}=0\)
\(-\frac{14}{5}<-1<\frac{-15}{19}<-\frac{15+\left(-2\right)}{19+\left(-2\right)}=-\frac{13}{17}\)
\(\frac{5}{2}>\frac{4}{2}=2>\frac{11}{7}=\frac{99}{63}>\frac{13}{9}=\frac{91}{63}\)
Vậy ta sắp xếp như sau:
\(-\frac{14}{5};-\frac{15}{19};-\frac{13}{17};0;\frac{13}{9};\frac{11}{7};\frac{5}{2}\)
A=\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)
=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12
=1/5-1/12
=7/60
Dấu chấm là dấu nhân nhé bạn
A=1/30+1/42+1/56+1/72+1/90+1/110+1/132
A=1/5*6+1/6*7+1/7*8+1/8*9+1/9*10+1/10*11+1/11*12
A=1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12
A=1/5-1/12
A=7/60
\(\frac{5.4^{15}.9^9-4.3^{20}.8^9}{5.2^9.6^{19}-7.2^{29}.27^6}\)=2
= 3/5
tick vài cái nhé
1-5/6+7/12-9/20+11/30-13/42+15/56-17/72+19/90
=1-1/2-1/3+1/3+1/4-1/4-1/5+.+1/9+1/10
=1-1/2+1/10
=1/2+1/10
=5/10+1/10
=6/10
=3/5